Molecules in the spotlight
New technique allows real-time observation of molecules during chemical reactions
A novel x-ray technique allowing the observation of molecular motion on a time scale never reached before has been developed by a team of researchers from Ecole Polytechnique Fédérale de Lausanne (EPFL) and the Paul Scherrer Institute (PSI) in Switzerland. Results of the research led by Professor Majed Chergui, head of EPFL's laboratory of Ultrafast spectroscopy in collaboration with the FEMTO group at PSI appear in Science.
This discovery opens promising prospects for the study of chemical and biological systems. It allows a better understanding of the structural evolution of molecules during a chemical reaction. The researchers have applied it to the study of metal-based molecular complexes, of high interest in chemistry. This could lead to applications in magnetic data storage or solar energy. It also opens new perspectives in biology, because the molecules studied are analogous to the active center in hemoproteins (haemoglobin, myoglobin).
It is possible to follow a cat landing on its feet in "real time" using a camera with shutter times on the order of tens of milliseconds. To do the same with molecules, 100,000 million times smaller than cats, requires shutter times that are 100,000 million times faster - a few tens of femtoseconds.
Although there are lasers that permit such shutter speeds, no existing optical methods can capture the molecular structure. In order to overcome this limitation, Chergui's team combined lasers delivering femtosecond pulses of ultraviolet-visible light with a source of femtosecond X-ray pulses, in a technique now known as ultrafast X-Ray Absorption Spectroscopy. "With the extremely short wavelengths of this kind of pulsed radiation, it is possible to observe the molecular structure changes, and thus to obtain precise information about the breaking, the formation, or the transformation of chemical bonds between atoms. And all this, in real time," explains Chergui.
To reach this degree of precision, the researchers needed a source of stable and tunable femtosecond X-Ray pulses. They found it at the Paul Scherrer Institute in Villigen, Switzerland, in a collaboration with Dr. Rafael Abela's team. Using the femtosecond X-ray pulses extracted from the Swiss Light Source synchrotron in a technique developed at the PSI, the researchers were able to follow in real time a structural change of the molecule in 150 femtoseconds. This method is an excellent tool for analysing reactions in liquid and disordered environments that characterize many biological and chemical systems.
Most read news
Topics
Organizations
Other news from the department science
Get the analytics and lab tech industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
Most read news
More news from our other portals
See the theme worlds for related content
Topic World Spectroscopy
Investigation with spectroscopy gives us unique insights into the composition and structure of materials. From UV-Vis spectroscopy to infrared and Raman spectroscopy to fluorescence and atomic absorption spectroscopy, spectroscopy offers us a wide range of analytical techniques to precisely characterize substances. Immerse yourself in the fascinating world of spectroscopy!
Topic World Spectroscopy
Investigation with spectroscopy gives us unique insights into the composition and structure of materials. From UV-Vis spectroscopy to infrared and Raman spectroscopy to fluorescence and atomic absorption spectroscopy, spectroscopy offers us a wide range of analytical techniques to precisely characterize substances. Immerse yourself in the fascinating world of spectroscopy!
Last viewed contents
Xantos Biomedicine and QIAGEN AnnounceCo-Marketing Agreement for RNAi Library with High-Content Cellular Screening System
Closing in on mystery surrounding dangerous blood syndromes - Genetically driven MDS enabled by gene linked to metabolism and oxygen in cells
Long-COVID - all a question of genes? - New study results show possible risk factor
Beckman Coulter and Fujirebio enter into partnership - The goal is a patient-friendly, blood-based Alzheimer's disease test
Beta cells from stem cells: Potential for cell replacement therapy - Quality control with CD177 can help save lots of time, efforts and money
Clinical Reference Laboratory Inc to build European laboratory hub in UK
The evolution of cancer cells decoded - "Our vision is a new type of early cancer detection"
Protagen Deepens Cooperation With Bayer Schering Pharma
Seeing a diagnosis: How an eye test could aid Alzheimer's detection
C-mo Medical Solutions raises €4.1 million aiming to transform cough monitoring
New technique for testing drugs to treat cystic fibrosis and epilepsy