Neutrons observe vitamin B6-dependent enzyme activity useful for drug development
Scientists at the Department of Energy's Oak Ridge National Laboratory have performed neutron structural analysis of a vitamin B6-dependent protein, potentially opening avenues for new antibiotics and drugs to battle diseases such as drug-resistant tuberculosis, malaria and diabetes.
An ORNL-led team used neutrons to observe the AAT enzyme, a vitamin B6-dependent protein, and found that the chemical reaction occurred only in one active site. Nuclear scattering length density maps (colored mesh) highlight the positions of critical hydrogen atoms, including a low-barrier hydrogen bond (magenta mesh) not thought to exist in AAT, which may be crucial for catalysis
Jill Hemman and Andrey Kovalevsky /Oak Ridge National Laboratory, US Dept. of Energy
ORNL's Steven Dajnowicz (left) and Andrey Kovalevsky prepared a sample to begin neutron structural analysis of a vitamin B6-dependent protein using the IMAGINE beamline at ORNL's High Flux Isotope Reactor. Results of the study could open avenues for new antibiotics and drugs to battle diseases.
Genevieve Martin/Oak Ridge National Laboratory, US Dept. of Energy
Specifically, the team used neutron crystallography to study the location of hydrogen atoms in aspartate aminotransferase, or AAT, an enzyme vital to the metabolism of certain amino acids.
"We visualized the first neutron structure of a vitamin B6 enzyme that belongs to a large protein family with hundreds of members that exist in nature," said ORNL's Andrey Kovalevsky, a senior co-author of the study, which was published in Nature Communications .
Vitamin B6-dependent proteins are part of a diverse group of enzymes that conduct over a hundred different chemical reactions in cells. The enzymes are of interest to biomedical, as well as bioenergy, researchers because of their role in metabolizing amino acids and other cell nutrients.
"These enzymes are unique in that each one performs a specific chemical reaction with exquisite accuracy, while suppressing other viable chemical transformations," Kovalevsky said. "How they accomplish this is not well understood, but it is of great significance for drug design."
The team's previous research predicted that hydrogen atoms move in and around the enzyme's active site, where the chemical reaction takes place, indicating that the hydrogen atoms' positioning controls the reaction type. Knowing the precise location of hydrogen atoms can explain why the behavior of these enzymes is so specific, but hydrogen is hard to detect with standard methods such as X-ray crystallography.
To directly determine the positions of hydrogen atoms within AAT, the ORNL-led team turned to neutron diffraction techniques. The researchers exposed delicate protein crystals to neutrons using the IMAGINE beamline at ORNL's High Flux Isotope Reactor and the LADI-III beamline at the Institut Laue-Langevin in Grenoble, France.
Surprisingly, the team observed a reaction within one AAT protein biomolecule while another AAT biomolecule was unchanged, providing a before-and-after perspective of the enzyme-catalyzed chemical reaction.
"The data revealed that in one of the enzyme's biomolecular structures the covalent bonds reorganized after a chemical reaction occurred in the active site and, in another, the reaction had not taken place," Kovalevsky said. "Essentially, we were able to obtain two structures in one crystal, which has never been done before for any protein using neutrons."
With this knowledge, the team will run molecular simulations to determine the hydrogen atoms' specific behavior when interacting with the enzyme. The results could be useful in guiding the future design of novel medicines against multidrug-resistant tuberculosis, malaria, diabetes and antibiotic-resistant bacteria.
"This study highlights how neutrons are an unrivaled probe for identifying the location of hydrogen atoms in biological systems, providing us with an unprecedented level of structural detail for this important enzyme," LADI-III beamline scientist Matthew Blakeley said.
Original publication
Most read news
Original publication
Steven Dajnowicz, Ryne C. Johnston, Jerry M. Parks, Matthew P. Blakeley, David A. Keen, Kevin L. Weiss, Oksana Gerlits, Andrey Kovalevsky & Timothy C. Mueser; "Direct visualization of critical hydrogen atoms in a pyridoxal 5′-phosphate enzyme"; Nature Comm.; 2017
Topics
Organizations
Other news from the department science
Get the analytics and lab tech industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
Most read news
More news from our other portals
Last viewed contents
Screening for Co-Crystals with a Solubility-based Approach with Crystal16 - Discover a systematic approach for screening co-crystals
3D microscopy technique allows scientists to trace dangerous heart waves
Sensitive detection of molecules - Short pulses of strong laser light make the concentration of molecules visible
Four-legged, dog-like robot ‘sniffs’ hazardous gases in inaccessible environments - Portable mass spectrometry for on-site detection of hazardous volatile organic compounds via robotic extractive sampling
Research team decodes symbiotic interactions in marine algae using raman spectroscopy - Implications for biotechnology and environmental protection
Researchers use functional MRI to study small-scale strokes
Analytica 2024: a guide to Laboratory 4.0 - Greater efficiency through laboratory robots and artificial intelligence
New sensors can detect single protein molecules - Modified carbon nanotubes could be used to track protein production by individual cells.
Chemists design 'miniecosystems' to test drug function
Why ICP-OES User Are Moving up to the Latest Technology -
Changes to Executive Board of Carl Zeiss AG - Dr. Ludwin Monz will be stepping down from his position as President and CEO of the Executive Board of Carl Zeiss Meditec AG at his own request