Scientists open doors to diagnosis of emphysema
EMBL development may provide powerful new test for inflammatory lung diseases
Chronic inflammatory lung diseases like chronic bronchitis and emphysema are a major global health problem, and the fourth leading cause of death and disability in developed countries, with smoking accounting for 90% of the risk for developing them. Work by scientists at the European molecular biology Laboratory (EMBL) and its Molecular medicine Partnership Unit (MMPU) with the University of Heidelberg, Germany, has shed new light on the underlying disease process of emphysema using a technique which could in future be adapted for use in diagnosis. The study is published in Nature chemical biology .
The researchers present a new strategy for testing the activity of MMP12, an enzyme known to be involved in the development of emphysema. Emphysema is characterised by the damage and destruction of the alveoli, the tiny air-sacs of the lungs that are crucial for respiration and uptake of oxygen from the air.
Cigarette smoke and other irritants activate immune cells, like macrophages, in the lungs to destroy the foreign material, and chronic exposure causes inflammation. MMP12 is an enzyme secreted by macrophages which usually helps them to break down the extracellular matrix (the complex network of proteins and fibers that surround and support the cells of the body), a process important for normal wound healing. However, over-stimulation of macrophages by irritants leads to build up of excess MMP12, which starts to damage the delicate structure of the small airspaces of the lungs, eventually leading to emphysema.
"We developed a tool which, for the first time, allows us to study MMP12 activity in specific cells, as if we were actually looking inside the lungs," says Carsten Schultz, whose group carried out the research at EMBL.
The researchers designed a special fluorescent probe that essentially allows MMP12 activity in macrophages to be quantified by the amount of fluorescence they take up. Applying this test to samples of lung cells from a mouse model of acute lung inflammation showed that MMP12 activity in macrophages was indeed increased.
Although the study was performed in mice, the researchers hope that in future it will be possible to adapt the test for use in patients. "It would allow us to use MMP12 as a biomarker to monitor disease evolution and the risk of emphysema formation. It could also serve to examine the response to therapeutic interventions in patients with inflammatory lung diseases," says Marcus Mall, group leader at the Children's Hospital at the University of Heidelberg.
The EMBL and University researchers hope that the new testing strategy can be extended to other enzymes involved in lung inflammation and that, with a better picture of the processes underlying these diseases, future treatments could be more specific, reducing the side-effects often caused by broad spectrum treatments.
Most read news
Topics
Organizations
Other news from the department science
Get the analytics and lab tech industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
Most read news
More news from our other portals
Last viewed contents
Amorfix detects vCJD prions in blood from non-human primates
CRELUX and ProQinase establish joint crystal-grade kinase protein and structures platform
Takara Bio and Eppendorf cooperate - Automation of Takara Bio’s Chemistries on Eppendorf’s Automated Pipetting Systems for Significantly Higher Efficiency
University of Leicester researchers discover new fluorescent silicon nanoparticles - Research may ultimately track the uptake of drugs by the body's cells
Live-cell microscopy reveals cell migration by direct forces
PET imaging with special tracer can detect and diagnose early Alzheimer's disease
Through thick and thin - Decades-old fluid question solved
Microfluidic molecular exchanger helps control therapeutic cell manufacturing
Autonomous synthesis robot uses AI to speed up chemical discovery - Impressive ingenuity
Differentiating amino acids: Foundation for direct sequencing of individual proteins developed