Chemical engineers discover new way to control particle motion potentially aiding micro- and nano-fluid systems
"Particle arrangements are determined by the interactions of the particles with their boundaries. Thus, we were able to use these interactions as a means for controlling how readily the fluid will self-mix, diffuse, and flow," said Dr. Thomas Truskett, associate professor of chemical engineering at the university.
The research by Ph.D. students Gaurav Goel, William Krekelberg and Truskett at the university along with Dr. Jeffrey Errington of the State University of New York at Buffalo, appears in Physical Review Letters.
Civic planners and schoolteachers have long appreciated that the motion of cars on highways or children through hallways proceeds smoothly if lanes of traffic are formed. Truskett's research team found that a similar principle applies for the motion of fluid particles in narrow channels. Specifically, their computer simulations reveal that fluid particles move past one another more easily if they first form "layers" aligned with the boundaries of the channels. The team has also introduced a way to systematically determine which types of channel boundaries will promote or frustrate the formation of the layers necessary for faster particle transport. If layering leads to faster particle dynamics, it is natural to ask why bulk fluids adopt a more disordered structure with no layering, said Truskett.
"The reason: thermodynamics determines the structure of a fluid, not dynamics - and thermodynamics favors a disordered state for bulk fluids because it lowers the system's free energy," he said.
The Truskett team determined that confining a fluid to small length scales allowed them to tune the thermodynamically-favored state to coincide with one that has layering and fast particle dynamics.
Other news from the department science
These products might interest you
Precision balances by Ohaus
High-performance precision balances for everyday use in laboratories & industry
From milligram-accurate measurement of small samples to routine weighing in the kilogram range
Pioneer PX by Ohaus
Never before has a low-cost balance been such a good long-term investment
Accurate results every time - even when exposed to temperature fluctuations & electromagnetic fields
Automatische XPR-Waagen by Mettler-Toledo
Production of standards, samples and concentrations - fast and reliable
Automate the weighing processes in your laboratory - ideal also for sample prep at chromatography
Balances analytiques by Ohaus
Analytical balances with outstanding weighing performance, as easy to use as a smartphone
These space-saving analytical and semi-micro balances are surprisingly intuitive to use
Get the analytics and lab tech industry in your inbox
From now on, don't miss a thing: Our newsletter for analytics and lab technology brings you up to date every Tuesday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.