30-Jan-2020 - Ludwig-Maximilians-Universität München (LMU)

Gene scissors against incurable muscular disease

New gene correction therapy

Duchenne type muscular dystrophy (DMD) is the most common hereditary muscular disease among children. A Munich based team has developed a gene therapy that may provide permanent relief for those suffering from DMD. LMU researcher Eckhard Wolf was involved in the study.

Muscles need dystrophin in order to regenerate. Persons suffering from Duchenne muscular dystrophy lack this essential muscular protein due to mutations in the gene which is responsible for producing dystrophin. As a result, their existing muscle cells deteriorate over time and are gradually replaced by connective and fatty tissue; muscle strength weakens during the course of the disease. The first symptoms usually appear around the age of five. Children with the disease begin to have difficulties with movements they previously completed with ease, for example climbing stairs or getting up from the floor. At approximately the age of twelve, they are no longer able to walk, later losing movement in their arms and hands. Due to concomitant respiratory and cardiac failure, the majority of patients does not reach the age of 40. DMD affects mainly boys, since the responsible mutations are located in the dystrophin gene on the X chromosome.

An interdisciplinary Munich research team led by scientists from Technical University of Munich (TUM) has for the first time succeeded in correcting the mutated dystrophin gene in living pigs. In order to cut the defective gene sequence from the DNA of the animals' muscle and heart cells, the researchers modified the Crispr-Cas9 gene scissors. "These gene scissors are highly efficient and specifically corrected the dystrophin gene," says Professor Wolfgang Wurst, developmental geneticist at TUM and the German Research Center for Environmental Health. It became then again possible to viably read the gene which had been unreadable because of the genetic defect, thus allowing for a successful protein biosynthesis. Now the shorter but stably formed dystrophin protein was able to improve muscle function. The animals treated were less susceptible to cardiac arrhythmia and had an increased life expectancy compared to animals with the disease that did not receive the therapy.

Therapeutic success with clinically relevant model

"Muscle and heart cells are long-lived cell structures. One half of all myocardial cells remain functional from birth throughout the entire lifecycle of a human being," says Professor Christian Kupatt, cardiologist at university hospital TUM Klinikum rechts der Isar. "The genome of a cell is used for protein biosynthesis as long as the cell is alive, and once a cell has been affected by the therapy, it remains corrected. So if we change the genome of a myocardial cell, the correction is a long-term success, in contrast to the results of previous methods."

The gene sequence responsible for the dystrophin protein has already been successfully corrected in the past, however in mice and other animal models. "Our results are very promising, since for the first time, we have now been able to demonstrate therapeutic success in a clinically relevant large animal model," says Professor Maggie Walter, neurologist at the LMU university hospital. In terms of important biochemical, clinical and pathological changes, the pig model mirrors Duchenne muscular dystrophy in humans. "Since the disease proceeds faster in our pig model, we were able to verify the efficacy of the therapeutic approaches within a manageable period of time," says Professor Eckhard Wolf, Chair of Molecular Animal Breeding and Biotechnology at the Gene Center and the Department of Veterinary Sciences at LMU.

Ludwig-Maximilians-Universität München (LMU)

Request information now

Recommend news PDF version / Print

Share on

Facts, background information, dossiers
  • Duchenne muscular dystrophy
  • gene therapy
  • dystrophin
  • CRISPR
  • CRISPR/Cas9
More about LMU
  • News

    Lifting the lid on beta-barrels

    The interaction between biotin and streptavidin is a well-established experimental tool in bionanotechnology. LMU physicists have now shown that the mechanical stability of the complex is dependent on the precise geometry of the interface. Mechanical forces play a vital role at all levels i ... more

    Tonsils as a testbed

    Biomedical researchers at LMU have isolated immune cells from human tonsils obtained following routine surgery, and used them to analyze aspects of the immune response and test the effects of anti-inflammatory agents at the cellular level. Human tissues that have been surgically removed fro ... more

    All in a flash! Eliminate proteins from cells with a flash of light

    LMU scientists have developed a tool to eliminate essential proteins from cells with a flash of light. The new method makes it possible to study the function of essential proteins. Proteins not only provide much of the structural architecture of cells, they also perform most of the executiv ... more

More about TU München
  • News

    A molecular map for the plant sciences

    Plants are essential for life on earth. They provide food for essentially all organisms, oxygen for breathing, and they regulate the climate of the planet. Proteins play a key role in controlling all aspects of life including plants. Under the leadership of the Technical University of Munic ... more

    Looking at the good vibes of molecules: a new method for label-free metabolic imaging

    Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy. The simultaneous visualization of dynamic alterations for classes of metabolites, such as carbohydrates and lipids, was an unmet need in biomedical research. Now, a novel imaging method developed by a ... more

    The Art of Sensing within the Skin

    The art of tattooing may have found a diagnostic twist. A team of scientists in Germany have developed permanent dermal sensors that can be applied as artistic tattoos. As detailed in the journal Angewandte Chemie, a colorimetric analytic formulation was injected into the skin instead of ta ... more