Screening method for anti-HIV therapeutics?
A new and easy method for the detection of microRNA and RNase H activity could be used for screening anti-HIV therapeutics say Chinese scientists.
Zhengping Li and co-workers at Hebei University have developed a rapid, quantitative and sensitive method for the detection of microRNA (miRNA) and RNase H activity. 'Most of the current existing assays for the detection of miRNAs and RNase H activity need to label the oligonucleotide probes, for example where the labels are either radioactive isotopes or fluorescent dyes', explains Li. 'The label-based assays generally contain sophisticated preparation, resulting in high cost and low stability.'
miRNAs are a class of small RNA molecules that are not responsible for protein-coding, and can be found in plants, animals and viruses, and play an important role in gene regulation. Recently, distinct miRNA expression patterns have been associated with various types of tumours, and have thus been the subject of intense investigation in the diagnosis of diseases and as new drug targets. RNase H is an enzyme that specifically digests RNA, and plays a critical role in several cellular processes including DNA replication, repair and transcription. 'The RNase H activity of HIV-1 reverse transcriptase is becoming a new target for HIV-1 inhibitor and represented an exciting possibility for developing new anti-HIV therapeutics', says Li.
This method requires no labelling of chemical probes and the assay can be accomplished with a common spectrometer, reducing analysis costs and increasing analysis through-put. The method exploits conformational changes of an optical polymer probe in the presence of miRNA and/or RNase H, which corresponds to a change in the absorbance observed. The duplex complex leads to a red-shift absorption, while the triplex leads to an orange-shift absorption.
'In the future, this work should be applied for miRNA detection in real biological samples and especially for screening anti-HIV therapeutics', says Li. 'The future challenges facing miRNA detection should be obtaining high sensitivity and selectivity with simple operation, especially for in situ detection.'
Original article: Yali Zhang, et. al.; Chem. Commun., 2009.
Most read news
Topics
Organizations
Other news from the department science
Get the analytics and lab tech industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
Most read news
More news from our other portals
Last viewed contents
Beta cells from stem cells: Potential for cell replacement therapy - Quality control with CD177 can help save lots of time, efforts and money
Clinical Reference Laboratory Inc to build European laboratory hub in UK
The evolution of cancer cells decoded - "Our vision is a new type of early cancer detection"
Protagen Deepens Cooperation With Bayer Schering Pharma
Seeing a diagnosis: How an eye test could aid Alzheimer's detection
C-mo Medical Solutions raises €4.1 million aiming to transform cough monitoring
New technique for testing drugs to treat cystic fibrosis and epilepsy
Neuronal Parkinson inclusions are different than expected - Study raises new questions about the etiology of Parkinson’s disease
Analytik Jena Sells Site in Eisfeld - New investor acquiring entire Optics business unit as well as component production for analytical technology
Toxic agents behind Parkinson's disease seen at work for the first time - First look at how toxic protein clusters disrupt the membranes of healthy brain cells.