New insights from the nano world: Direct observation of carbon monoxide binding
Carbon monoxide is highly toxic since it blocks the binding site for oxygen in hemoglobin. This very principle – a porphyrin ring with a central iron or cobalt atom that the poisonous gas attaches to – can be used to implement sensors to warn against carbon monoxide. Physicists headed by Professor Johannes Barth from the Technische Universitaet Muenchen (TUM) have, in collaboration with theorists in Lyon and Barcelona, deciphered the mechanism for binding of gas molecules to iron and cobalt porphyrins. They present the unexpected phenomena they discovered in the current issue of Nature Chemistry, including the first images.
A scanning tunneling microscopy image (left) shows four porphyrins. The models (right) illustrate the two systems shown in the picture. The protrusions correspond to the central atom (yellow sphere) and the two elevated portions to the saddle (orange). The characteristic cross shape results from the attached carbon monoxide molecules (red and blue).
LS Barth
The mechanism for binding oxygen to metalloporphyrins is a vital process for oxygen-breathing organisms. Understanding how small gas molecules are chemically bound to the complexed metal centers is also important in catalysis or the implementation of chemical sensors. When investigating these binding mechanisms, scientists use porphyrin rings with a central cobalt or iron atom. They coat a copper or silver support surface with these substances.
An important characteristic of porphyrins is their conformational flexibility. Recent research has shown that each specific geometric configuration of the metalloporphyrins has a distinct influence on their functionality. In line with the current state of research, the scientists expected only a single CO molecule to bind axial to the central metallic atom. However, detailed scanning tunnel microscopy experiments by Knud Seifert revealed that, in fact, two gas molecules dock between the central metallic atom and the two opposite nitrogen atoms. Decisive is the saddle shape of the porphyrin molecules in which the gas molecules assume the position of the rider.
The significance of the saddle geometry became apparent in model calculations done by Marie-Laure Bocquet from the University of Lyon. Her analysis helped the researchers understand the novel binding mode in detail. She also showed that the shape of the molecular saddle remains practically unchanged, even after the two gas molecules bind to the porphyrin.
The porphyrins reacted very differently when the researchers replaced the carbon monoxide with stronger-binding nitrogen monoxide. As expected, this binds directly to the central atom, albeit only a single molecule fits in each porphyrin ring. This has a significant effect on the electronic structure of the carrier molecule and the characteristic saddle becomes flattened. Thus, the porphyrin reacts very differently to different kinds of gas – a result that is relevant for potential applications, like sensors.
Dr. Willi Auwaerter, one of the authors, is thrilled: "New is that we actually saw, for the first time, the mechanism on a molecular level. We even can selectively move individual gas molecules from one porphyrin to another." The team aims to explain the physical and chemical processes on surfaces and in nanostructures. Once these fundamental questions are answered they will take on new challenges: How big is the influence of the central atom? How does the binding change in planar conformations? How can such systems be utilized to implement catalyzers and sensors through controlled charge transfers?
The research was funded by the Deutsche Forschungsgemeinschaft (Excellence Cluster "Munich-Centre for Advanced Photonics" (MAP)), the TUM Institute for Advanced Study, the European Research Council (ERC Advanced Grant MolArt), as well as the Spanish Ministerio de Ciencia E Innovacion. The Leibniz Rechenzentrum of the Bayerische Akademie der Wissenschaften provided computing time. The research group of Professor Barth is member of the Catalysis Research Center (CRC) of the TUM.
Original publication
Most read news
Other news from the department science
Get the analytics and lab tech industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
Most read news
More news from our other portals
Last viewed contents
Yumda now part of LUMITOS - Europe’s leading provider of B2B portals has expanded its portfolio to media outlets for the food and beverage industries
U.S. Department Of Defense selects Applied Biosystems for development of instrument system to identify infectious diseases
Scientists observe nanowires as they grow - X-ray experiments reveal exact details of self-catalysed growth for the first time
compEAct Serie | Elemental analyzers | Analytik Jena
New driver, target in advanced mucosal melanoma
Invitrogen and Applied Biosystems Complete Merger - Combined Company, Called Life Technologies Corporation, is a Global Leader in Biotechnology Reagents and Systems