06-Oct-2021 - Max-Planck-Institut für Biochemie

Molecular scales on biological membranes: Mass-Sensitive Particle Tracking

New method to determine location and size changes of unlabeled proteins on membranes via their mass

A large proportion of biologically relevant processes take place at membranes. Studying the dynamics of these processes in real time and without disturbing the biological system is still a major methodological challenge. A team led by Petra Schwille, director at the MPI of Biochemistry (MPIB), and Nikolas Hundt from the Ludwig-Maximilians-Universität München (LMU) has now developed a new method for this purpose: Mass-Sensitive Particle Tracking (MSPT). Using MSPT, the movements and reactions of individual unlabeled proteins on biological membranes can be determined solely by their mass. The method has been published in Nature Methods.

Cellular processes on membranes are often fast and short-lived. Molecules assemble briefly, separate again, interact with different partners and move along or through the membrane. It is therefore important to not only study static snapshots of these processes, but also to understand their dynamics. But how can this be achieved methodically? Petra Schwille from the MPIB and Nikolas Hundt from the LMU together with their team have developed the method Mass-Sensitive Particle Tracking - MSPT, which allows to analyze proteins during dynamic processes on membranes.

Analysis of dynamic processes on biological membranes

The starting point for the biophysicists were recent advancements in mass photometry, which could already be used to determine the molecular mass of unlabeled molecules in solution. What is new about MSPT is that the dynamics of membrane-associated proteins can now be tracked in their biologically plausible environment. In this process, individual proteins are identified by their molecular mass without the need for labeling. Frederik Steiert, one of the first authors of the publication, says: "We can now track directly on biological membranes what mass individual proteins have, how they move and how they interact. This allows us to study the dynamics of biological systems in greater detail." Analyzing dynamic processes is particularly important in biology as many processes at the membrane are transient.

Mass determination by light scattering

What principles is the new method based on? When light hits a particle, the light is scattered. The intensity of the scattered light depends on the mass of the particle. Videos in which individual proteins on membranes are made directly visible are recorded with a microscope. With the aid of analysis software, these proteins can be tracked and their scattering signal, and thus their mass, can be determined. This is currently possible for proteins with a molecular weight of at least 50 kDa, i.e. for a large part of all known proteins. Another advantage of the new MSPT method is that proteins do not have to be labeled. Labeling can be achieved, for example, by attaching fluorescent tags to molecules. However, labeling poses the risk that proteins could be impaired in their function or that the fluorescent labels could bleach during the experiment. By using MSPT, in contrast, methodological problems that can arise from labeling are prevented.

MinDE protein system

To demonstrate the potential of the method for biological questions, the biophysicists used an established system from the Schwille laboratory: the MinDE protein system from the bacterium Escherichia coli (E. coli). MinD and MinE proteins are involved in E. coli cell division. Tamara Heermann, another first author, says: "The method permits us to characterize properties of dynamical systems that were previously not measurable. This allowed us not only to verify established findings about the Min system, but also to gain new insights.” By using MSPT, the team was able to show that the complexes of MinD proteins are larger than initially thought. In addition, the experiments provide first insights that MinE can act as a connecting piece for MinD proteins and that it can thus initiate the membrane release of larger complexes.

As reported in the new Nature Methods paper, MSPT provides valuable insights for elucidating dynamic processes at biological membranes. However, the researchers are continuously working on improving the method even further. In the future, the method should also be applicable for integral membrane proteins and it should allow the detection of even smaller proteins.

Max-Planck-Institut für Biochemie

Recommend news PDF version / Print

Share on

Facts, background information, dossiers
  • Mass-Sensitive Part…
  • proteins
  • cell membranes
  • protein analysis
  • mass determination
More about MPI für Biochemie
  • News

    MaxDIA – taking proteomics to the next level

    Proteomics produces enormous amounts of data, which can be very complex to analyze and interpret. The free software platform MaxQuant has proven to be invaluable for data analysis of shotgun proteomics over the past decade. Now, Jürgen Cox, group leader at the Max Planck Institute of Bioche ... more

    A multidimensional view of the coronavirus

    What exactly happens when the corona virus SARS-CoV-2 infects a cell? In an article published in Nature, a team from the Technical University of Munich (TUM) and the Max Planck Institute of Biochemistry paints a comprehensive picture of the viral infection process. For the first time, the i ... more

    The relationship of proteins

    Proteins control life as one of the most important biomolecules - as enzymes, receptors, signal or structural building blocks. Researchers at the Max Planck Institute (MPI) of Biochemistry have for the first time uncovered the proteomes of 100 different organisms. The selected specimens com ... more

More about Max-Planck-Gesellschaft
  • News

    First glimpse of hydrodynamic electron flow in 3D materials

    Electrons flow through most materials more like a gas than a fluid, meaning they don’t interact much with one another. It was long hypothesized that electrons could flow like a fluid, but only recent advances in materials and measurement techniques allowed these effects to be observed in 2D ... more

    MaxDIA – taking proteomics to the next level

    Proteomics produces enormous amounts of data, which can be very complex to analyze and interpret. The free software platform MaxQuant has proven to be invaluable for data analysis of shotgun proteomics over the past decade. Now, Jürgen Cox, group leader at the Max Planck Institute of Bioche ... more

    How ethane-consuming archaea pick up their favorite dish

    Hot vents in the deep sea are home to microbes that feed on ethane. They were discovered recently from scientists of the Max Planck Institute for Marine Microbiology. Now the researchers from Bremen succeeded in finding an important component in the microbial conversion of the gas. They wer ... more

More about LMU