06-Oct-2021 - Max-Planck-Institut für Biochemie

Molecular scales on biological membranes: Mass-Sensitive Particle Tracking

New method to determine location and size changes of unlabeled proteins on membranes via their mass

A large proportion of biologically relevant processes take place at membranes. Studying the dynamics of these processes in real time and without disturbing the biological system is still a major methodological challenge. A team led by Petra Schwille, director at the MPI of Biochemistry (MPIB), and Nikolas Hundt from the Ludwig-Maximilians-Universität München (LMU) has now developed a new method for this purpose: Mass-Sensitive Particle Tracking (MSPT). Using MSPT, the movements and reactions of individual unlabeled proteins on biological membranes can be determined solely by their mass. The method has been published in Nature Methods.

Cellular processes on membranes are often fast and short-lived. Molecules assemble briefly, separate again, interact with different partners and move along or through the membrane. It is therefore important to not only study static snapshots of these processes, but also to understand their dynamics. But how can this be achieved methodically? Petra Schwille from the MPIB and Nikolas Hundt from the LMU together with their team have developed the method Mass-Sensitive Particle Tracking - MSPT, which allows to analyze proteins during dynamic processes on membranes.

Analysis of dynamic processes on biological membranes

The starting point for the biophysicists were recent advancements in mass photometry, which could already be used to determine the molecular mass of unlabeled molecules in solution. What is new about MSPT is that the dynamics of membrane-associated proteins can now be tracked in their biologically plausible environment. In this process, individual proteins are identified by their molecular mass without the need for labeling. Frederik Steiert, one of the first authors of the publication, says: "We can now track directly on biological membranes what mass individual proteins have, how they move and how they interact. This allows us to study the dynamics of biological systems in greater detail." Analyzing dynamic processes is particularly important in biology as many processes at the membrane are transient.

Mass determination by light scattering

What principles is the new method based on? When light hits a particle, the light is scattered. The intensity of the scattered light depends on the mass of the particle. Videos in which individual proteins on membranes are made directly visible are recorded with a microscope. With the aid of analysis software, these proteins can be tracked and their scattering signal, and thus their mass, can be determined. This is currently possible for proteins with a molecular weight of at least 50 kDa, i.e. for a large part of all known proteins. Another advantage of the new MSPT method is that proteins do not have to be labeled. Labeling can be achieved, for example, by attaching fluorescent tags to molecules. However, labeling poses the risk that proteins could be impaired in their function or that the fluorescent labels could bleach during the experiment. By using MSPT, in contrast, methodological problems that can arise from labeling are prevented.

MinDE protein system

To demonstrate the potential of the method for biological questions, the biophysicists used an established system from the Schwille laboratory: the MinDE protein system from the bacterium Escherichia coli (E. coli). MinD and MinE proteins are involved in E. coli cell division. Tamara Heermann, another first author, says: "The method permits us to characterize properties of dynamical systems that were previously not measurable. This allowed us not only to verify established findings about the Min system, but also to gain new insights.” By using MSPT, the team was able to show that the complexes of MinD proteins are larger than initially thought. In addition, the experiments provide first insights that MinE can act as a connecting piece for MinD proteins and that it can thus initiate the membrane release of larger complexes.

As reported in the new Nature Methods paper, MSPT provides valuable insights for elucidating dynamic processes at biological membranes. However, the researchers are continuously working on improving the method even further. In the future, the method should also be applicable for integral membrane proteins and it should allow the detection of even smaller proteins.

Max-Planck-Institut für Biochemie

Recommend news PDF version / Print

Share on

Facts, background information, dossiers
  • Mass-Sensitive Part…
  • proteins
  • cell membranes
  • protein analysis
  • mass determination
More about MPI für Biochemie
  • News

    New method for early diagnosis of liver diseases by proteomics

    Two or three drinks every day could put your liver in danger. Using proteomics and machine learning, researchers now present a revolutionary tool to predict whether an individual has alcohol-related liver disease and if an individual patient is at risk of disease progression. In comparison ... more

    New method revolutionizes cancer diagnosis

    How does cancer arise? How does cellular composition influence tumor malignancy? These questions are profound and challenging to answer, but are crucial to understand the disease and find the right cure. Now, a German-Danish team led by Professor Matthias Mann has developed a ground-breakin ... more

    MaxDIA – taking proteomics to the next level

    Proteomics produces enormous amounts of data, which can be very complex to analyze and interpret. The free software platform MaxQuant has proven to be invaluable for data analysis of shotgun proteomics over the past decade. Now, Jürgen Cox, group leader at the Max Planck Institute of Bioche ... more

More about Max-Planck-Gesellschaft
  • News

    Microparticles with feeling

    An international research team headed by the Max Planck Institute for Marine Microbiology in Bremen, Aarhus University and the Science for Life Lab in Uppsala has developed tiny particles that measure the oxygen concentration in their surroundings. In this way, they can track fluid flow and ... more

    New method revolutionizes cancer diagnosis

    How does cancer arise? How does cellular composition influence tumor malignancy? These questions are profound and challenging to answer, but are crucial to understand the disease and find the right cure. Now, a German-Danish team led by Professor Matthias Mann has developed a ground-breakin ... more

    Structure of key protein for cell division puzzles researchers

    Human cell division involves hundreds of proteins at its core. Knowing the 3D structure of these proteins is pivotal to understand how our genetic material is duplicated and passed through generations. The groups of Andrea Musacchio and Stefan Raunser at the Max Planck Institute of Molecula ... more

More about LMU
  • News

    Most powerful dual-comb spectrometer developed

    Scientists from Hamburg and Munich developed the world's most powerful dual-comb spectrometer that paves the way for many applications in atmospheric science and biomedical diagnostics, such as early cancer detection. The work has recently been published in Nature Communications. The core p ... more

    Finding the invisible

    Higher organisms store their genetic material in the nuclei of cells as deoxyribonucleic acid (DNA). In a process called transcription, individual segments, the genes, are converted into messenger ribonucleic acids (mRNAs). Subsequently, the translation process produces proteins as the most ... more

    HIV infection: Better understanding the reservoir of virus in the body

    CD4+ T cells are important parts of the immune system and play a key role in defending the body against pathogens. As they possess a great variety of defense mechanisms against HIV in their resting state, they are infected only very rarely – but these few infected cells form a latent reserv ... more