11.11.2019 - Max-Planck-Institut für Kernphysik

Verzerrte Atome

Mit zwei Experimenten am Freie-Elektronen-Laser FLASH in Hamburg gelang es einer Forschergruppe unter Führung von Physikern des Max-Planck-Instituts für Kernphysik (MPIK) in Heidelberg, starke nichtlineare Wechselwirkungen ultrakurzer extrem-ultravioletter (XUV) Laserpulse mit Atomen und Ionen hervorzurufen. Die heftige Anregung des Elektronenpaars in einem Heliumatom konkurriert so stark mit dem ultraschnellen Zerfall des angeregten Zustands, dass vorübergehend sogar Besetzungsinversion auftreten kann. Verschiebungen der Energie elektronischer Übergänge in zweifach geladenen Neonionen beobachteten die Wissenschaftler mittels transienter Absorptionsspektroskopie (XUV-XUV Pump-Probe).

Ein internationales Team unter Leitung von Physikern des MPIK veröffentlicht seine Ergebnisse zur stark getriebenen Zwei-Elektronen-Anregung in Helium durch intensive und ultrakurze extrem-ultraviolette (XUV) Laserpulse [1]. Derartige doppelt angeregte Zustände sind äußerst kurzlebig und zerfallen innerhalb weniger Femtosekunden (10⁻¹⁵ Sekunden) durch Autoionisation: Ein Elektron fällt in den Grundzustand zurück, während das andere aus dem Atom entkommt. Eine signifikante Population des doppelt angeregten Zustands ist nur möglich, wenn die Anregung ("pump") schneller erfolgt als der Zerfall. Das ist vergleichbar mit dem Versuch, durch eine starke Pumpe einen Wassertank mit einem großen Leck zu füllen.

Das Experiment fand am Freie-Elektronen-Laser FLASH in Hamburg statt, der intensive XUV-Laserpulse mit einer hinreichend kurzen Wechselwirkungszeit erzeugt. Theoretische Modelle sagen ein effizientes Pumpen (Anregung) des Elektronenpaars durch solche Pulse voraus. Vorübergehend kann dabei die Besetzung des angeregten Zustands sogar die des Grundzustands übertreffen, also eine Besetzungsinversion eintreten. Diese laserkontrollierte Quantendynamik mit zwei aktiven Elektronen führt zu einer erheblichen Veränderung der Absorption von XUV-Licht, was experimentell auch beobachtet wurde (siehe unterer Teil der Abbildung).

Ebenfalls am FLASH führte das Team um die Heidelberger Physiker transiente XUV-Pump/XUV-Probe-Absorptionsspektroskopie an zweifach geladenen Neonionen durch [2]. Dabei diente der Freie-Elektronen-Laser sowohl zur Produktion der Ionen wie auch als spektroskopische Lichtquelle. Auf einer Zeitskala von wenigen Femtosekunden gab sich eine nichtlineare Verstärkung der Absorption (Coherence Spike, zu dt. Kohärenzspitze) zu erkennen, die mit der Kohärenzzeit der Freie-Elektronen-Laser-Pulse in Beziehung steht. Dieses Ergebnis ist ein entscheidender Schritt hin zur Anwendung zwei- und mehrdimensionaler spektroskopischer Methoden selbst an statistisch fluktuierenden Freie-Elektronen-Lasern mit Proben in der Gasphase. Die direkte Messung von (Stark-Effekt-)Verschiebungen atomarer Energieniveaus durch nichtlineare Wechselwirkung mit den intensiven XUV-Laserpulsen stellt das wesentliche wissenschaftliche Ergebnis dieses Experiments dar.

Insgesamt eröffnen diese Ergebnisse neue Wege, um extreme Licht-Materie-Wechselwirkungen zu untersuchen und zu verstehen. Darüberhinaus sind dies erste Schritte zur elementspezifischen Quantenkontrolle mit resonanter nichtlinearer Optik bei kurzen Wellenlängen.

Gezieltes Einstellen der „Verzerrung“ der Elektronenhülle selektierter chemischer Elemente in Molekülen könnte in Zukunft unser Verständnis von Chemie und ihrer Möglichkeiten revolutionieren.

Fakten, Hintergründe, Dossiers
  • Absorptionsspektroskopie
Mehr über MPI für Kernphysik
  • News

    Masse des Deuterons korrigiert

    Hochpräzise Messungen der Masse des Deuterons, des Kerns von schwerem Wasserstoff, bringen neue Erkenntnisse über die Zuverlässigkeit fundamentaler Größen der Atom- und Kernphysik. Das berichtet eine Kollaboration unter der Leitung des MPI für Kernphysik mit Partnern der Johannes Gutenberg- ... mehr

    Eine Ameise auf einem Elefanten wiegen: Quantensprung auf der Waage

    Ein neuer Zugang zur Quantenwelt: Wenn ein Atom beim Quantensprung eines Elektrons Energie aufnimmt oder abgibt, wird es schwerer oder leichter. Ursache ist Einsteins E = mc². Allerdings ist dieser Effekt bei einem einzelnen Atom ultraklein. Trotzdem gelang es nun einer internationalen Koop ... mehr

    Quantenlogik-Spektroskopie erschließt Potenzial hochgeladener Ionen

    Wissenschaftler der Physikalisch-Technischen Bundesanstalt (PTB) und des Max-Planck-Instituts für Kernphysik (MPIK) haben erstmals optische Messungen mit bislang unerreichter Präzision an hochgeladenen Ionen durchgeführt. Dazu isolierten sie ein einzelnes Ar¹³⁺-Ion aus einem extrem heißen P ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Mikropartikel mit Gefühl

    Ein internationales Forschungsteam unter Leitung des Bremer Max-Planck-Instituts für Marine Mikrobiologie, der Universität Aarhus und des Science for Life Institute in Uppsala hat winzige Partikel entwickelt, die den Sauerstoffgehalt in ihrer Umgebung anzeigen. So schlagen sie zwei Fliegen ... mehr

    Neue Methode revolutioniert Krebsdiagnose

    Wie entstehen Krebserkrankungen? Wie verändert die zelluläre Zusammensetzung eines Tumors dessen maligne Eigenschaften? Diese Fragen sind entscheidend, um Krebserkrankungen zu verstehen und um eine dauerhafte Heilung zu finden. Ein deutsch-dänisches Team unter der Leitung von Professor Matt ... mehr

    Struktur eines Schlüsselproteins für die Zellteilung gibt Rätsel auf

    An der menschlichen Zellteilung sind Hunderte von Proteinen beteiligt. Mit Kenntnis der 3D-Struktur dieser Proteine können wir verstehen, wie unser genetisches Material dupliziert und über Generationen hinweg weitergegeben wird. Die Gruppen um Andrea Musacchio und Stefan Raunser am Max-Plan ... mehr