Why can hot water freeze faster than cold water?
The researchers have confirmed how this phenomenon occurs in granular fluids, that is, those composed of particles that are very small and interact among those that lose part of their kinetic energy. Thanks to this theoretical characterization, "we can simulate on a computer and make analytical calculations to know how and when the Mpemba Effect will occur," said Antonio Lasanta. Lasanta is from the UC3M Gregorio Millán Barbany University Institute for Modeling and Simulation on fluid dynamics, Nanoscience and Industrial Mathematics. "In fact," he said, "we find not only that the hottest can cool faster but also the opposite effect: the coldest can heat faster, which would be called the inverse Mpemba effect."
A team of researchers from Universidad Carlos III de Madrid, the Universidad de Extremadura and the Universidad de Sevilla have defined a theoretical framework that could explain the Mpemba effect, a counterintuitive physical phenomenon revealed when hot water freezes faster than cold water.
UC3M
The fact that preheated liquids freeze faster than those that are already cold was observed for the first time by Aristotle in the 4th century AD. Francis Bacon, the father of scientific empiricism, and René Descartes, the French philosopher, were also interested in the phenomenon, which became a theory when, in 1960, a Tanzanian student named Erasto Mpemba explained to his teacher in a class that the hottest mixture of ice cream froze faster than the cold one. This anecdote inspired a technical document about the subject, and the effect began to be analyzed in educational and science magazines. However, its causes and effects have hardly been studied until now.
"It is an effect that, historically, has not been addressed in a rigorous manner but merely as an anomaly and a didactic curiosity," said Antonio Prados, one of the researchers from the Universidad de Sevilla Department of Theoretical Physics. "From our perspective, it was important to study it in a system with the minimum ingredients to be able to control and understand its behavior," he said. This has enabled them to understand what scenarios it is easier to occur in, which is one of the main contributions of this scientific study. "Thanks to this, we have identified some of the ingredients so that the effect occurs in some physical systems that we can describe well theoretically," stated researcher Francisco Vega Reyes and Andrés Santos, from the Universidad de Extremadura Instituto de Computación Científica Avanzada (Institute of Advanced Scientific Computation).
"The scenario that the effect will most easily occur in is when the velocities of the particles before heating or cooling have a specific disposition--for example, with a high dispersion around the mean value," he said. This way, the evolution of the temperature of the fluid can be significantly affected if the state of the particles is prepared before the cooling.
This research of "basic science," in addition to contributing to improving fundamental knowledge, might have other applications in the mid or long term. In fact, this group of researchers is planning to carry out an experiment that verifies the theory. Learning to emulate and use this effect might have applications in our daily life, according to scientists. For example, it could be used to make electronic devices which we want to cool faster.
Original publication
Other news from the department science
Get the analytics and lab tech industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
Most read news
More news from our other portals
Last viewed contents
DBS FID | Gas generators | VICI
Core facilities: Widening access to research instrumentation - DFG to fund 10 additional projects
Prototype of a portable detector for protein diagnosis - Pocket-sized HIV-Diagnostic Lab
Global guidelines to improve the quality of microscopy images in scientific publications
Previously unknown mode of bacterial growth discovered - Research teams use imaging and modelling to explain why single bacterial cells do not always grow exponentially
Novel method for fast 3D microscopy
NETZSCH is committed to the Selb site - NETZSCH invests over 60 million euros
MIT reels in RNA surprise with microbial ocean catch
Fast synthesis could boost drug development
Crucell to Concentrate Research and Development in Leiden, The Netherlands
Catalytic teamwork improves activity - Brønsted and Lewis acid sites can work in synergy to increase the catalytic activity of mesoporous materials, claim scientists.