Draft sequence of the rye genome

Breakthrough for comparative genomics in cereals and genome-based breeding for crop improvement

05-Apr-2017 - Germany

A team of German plant researchers from the Technical University of Munich (TUM) and from the Leibniz-Institute of Plant Genetics and Crop Plant Research in Gatersleben reports on a whole-genome draft sequence of rye. This rye whole-genome sequence closes a gap in Triticeae genome research and represents a genome resource of high value for comparative genomics, functional studies and genome-based breeding for sustainable crop production.

Art-work: Jean-Michel Pape, Thomas Schmutzer/IPK Gatersleben

The image shows a Circos plot illustrating the genomic diversity of rye and the wild species S. vavilovii.

Cereal rye (Secale cereale L.) is a diploid Triticeae species closely related to bread wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) and is one of the parents of the man-made cereal Triticale. Due to its superior winter hardiness, rye is especially used in Central and Eastern Europe for food, feed and bioenergy.

Among all diploid Triticeae, rye has the largest and a highly repetitive genome, this means it has a double chromosome set. “For a long time comprehensive whole-genome sequence information of rye has been missing, whereas draft genome sequences of its sister species barley and wheat became available recently”, explains Eva Bauer, scientist at the Chair of Plant Breeding of the Technical University of Munich and main author. “This gap has now been closed by our publication in The Plant Journal. Through comprehensive resequencing we investigated the exceptional genomic diversity of rye and developed a high-density genotyping array.”

Uwe Scholz, head of the research group Bioinformatics at the Leibniz-Institute of Plant Genetics and Crop Plant research adds: “This genomic resource is an indispensable tool for understanding the biology and evolution of major Triticeae species through comparative genomic approaches and for relating this knowledge to phenotypic traits.“

Rye genome is important for breeding better wheat or barley

Rye is an important model to elucidate the genetic and functional basis of traits that are also relevant for the genetic improvement of wheat and barley. It excels by an exceptional frost tolerance and outyields wheat and barley on poor and medium soils and under drought stress conditions. Rye translocations are present in many wheat varieties grown worldwide, and contribute to abiotic and biotic stress tolerance. Thus, the availability of rye whole-genome sequences will facilitate the elucidation of genes and molecular mechanisms underlying important agronomic traits that are useful for the improvement of related Triticeae species.

Original publication

Other news from the department science

Most read news

More news from our other portals

Last viewed contents

Fast, sensitive blood tests for use at home

“Two in One” enzyme: unusually flexible Scientists from the RUB have solved the structure of a viral protein - The Journal of Biological Chemistry has ranked this documentation as “Paper of the Week.”

“Two in One” enzyme: unusually flexible Scientists from the RUB have solved the structure of a viral protein - The Journal of Biological Chemistry has ranked this documentation as “Paper of the Week.”

Shedding light on protein interaction networks in a developing organism

Determining the structures of nanocrystalline pharmaceuticals by electron diffraction

Determining the structures of nanocrystalline pharmaceuticals by electron diffraction

Artificial opals measure temperature and time - Researchers discover novel sensors

Artificial opals measure temperature and time - Researchers discover novel sensors

FRITSCH Milling and Sizing opens second subsidiary in China

FRITSCH Milling and Sizing opens second subsidiary in China

Super-resolved imaging of a single cold atom on a nanosecond timescale - Scientists have made important progress in the research of cold atom super-resolution imaging

Super-resolved imaging of a single cold atom on a nanosecond timescale - Scientists have made important progress in the research of cold atom super-resolution imaging

Artificial intelligence boosts super-resolution microscopy - New generative model calculates images more efficient than established approaches

Artificial intelligence boosts super-resolution microscopy - New generative model calculates images more efficient than established approaches

Elucidation of vibration energy of a single molecule in an external force field

Cell labelling method from microscopy adapted for use in whole-body imaging for the first time - Researchers develop imaging methods to examine bodily processes from the individual building blocks to the whole system

Cell labelling method from microscopy adapted for use in whole-body imaging for the first time - Researchers develop imaging methods to examine bodily processes from the individual building blocks to the whole system

An improved wearable, stretchable gas sensor using nanocomposites - Ultrasensitive nitrogen dioxide gas sensor may find applications in real-time environmental monitoring or the healthcare industry

An improved wearable, stretchable gas sensor using nanocomposites - Ultrasensitive nitrogen dioxide gas sensor may find applications in real-time environmental monitoring or the healthcare industry

A Glimpse into Real-Time Methanol Synthesis - Dynamic Operation of a Miniplant at Fraunhofer ISE

A Glimpse into Real-Time Methanol Synthesis - Dynamic Operation of a Miniplant at Fraunhofer ISE