Flat lens opens a broad world of color
Image courtesy of Vyshakh Sanjeev/ Harvard SEA
Image courtesy of the Capasso Lab/Havard SEAS
The announcement was hailed as a breakthrough in optics and was named among Science Magazine's top discoveries of 2016.
But the lens had a limitation - it could only focus one color at a time.
Now, the same team has developed the first flat lens that works within a continual bandwidth of colors, from blue to green. This bandwidth, close to that of an LED, paves the way for new applications in imaging, spectroscopy and sensing.
One of the major challenges in developing a flat, broadband lens has been correcting for chromatic dispersion, the phenomenon where different wavelengths of light are focused at different distances from the lens.
"Traditional lenses for microscopes and cameras -- including those in cell phones and laptops -- require multiple curved lenses to correct chromatic aberrations, which adds weight, thickness and complexity," said Federico Capasso, Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering. "Our new breakthrough flat metalens has built-in chromatic aberrations corrections so that a single lens is required."
Correcting for chromatic dispersion -- known as dispersion engineering -- is a crucial topic in optics, and an important design requirement in any optical systems that deals with light of different colors. The ability to control the chromatic dispersion of flat lenses broadens their applications and introduces new applications that have not yet been possible.
"By harnessing chromatic aspects, we can have even more control over the light," said Reza Khorasaninejad, a Research Associate in the Capasso Lab and first author of the paper. "Here, we demonstrate achromatic flat lenses and also invent a new type of flat lens with reverse chromatic dispersion. We showed that one can break away from the constraints of conventional optics, offering new opportunities only bound by the designer's imagination."
To design an achromatic lens -- a lens without chromatic dispersion -- the team optimized the shape, width, distance, and height of the nanopillars that make up the heart of the metalens. As in previous research, the researchers used abundant titanium dioxide to create the nanoscale array.
This structure allows the metalens to focus wavelengths from 490 nm to 550 nm, basically from blue to green, without any chromatic dispersion.
"This method for dispersion engineering can be used to design various ultrathin components with a desired performance," said Zhujun Shi, a PhD student in the Capasso Lab and co-first author of the paper. "This platform is based on single step lithography and is compatible with high throughput manufacturing technique such as nano-imprinting."
Harvard's Office of Technology Development has filed patent applications on a portfolio of flat lens technologies and is working closely with Capasso and members of his research group to catalyze commercialization of this technology through a startup company.
Original publication
Other news from the department science
These products might interest you
Software & Data Management by Carl Zeiss
Bring Context to your Data with ZEISS Connected Microscopy
Your solution for microscopy, analysis and data management
HYPERION II by Bruker
FT-IR and IR laser imaging (QCL) microscope for research and development
Analyze macroscopic samples with microscopic resolution (5 µm) in seconds
Get the analytics and lab tech industry in your inbox
From now on, don't miss a thing: Our newsletter for analytics and lab technology brings you up to date every Tuesday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.
Most read news
More news from our other portals
See the theme worlds for related content
Topic World Spectroscopy
Investigation with spectroscopy gives us unique insights into the composition and structure of materials. From UV-Vis spectroscopy to infrared and Raman spectroscopy to fluorescence and atomic absorption spectroscopy, spectroscopy offers us a wide range of analytical techniques to precisely characterize substances. Immerse yourself in the fascinating world of spectroscopy!
Topic World Spectroscopy
Investigation with spectroscopy gives us unique insights into the composition and structure of materials. From UV-Vis spectroscopy to infrared and Raman spectroscopy to fluorescence and atomic absorption spectroscopy, spectroscopy offers us a wide range of analytical techniques to precisely characterize substances. Immerse yourself in the fascinating world of spectroscopy!
Topic World Chromatography
Chromatography enables us to separate, identify and thus understand complex substances. Whether in the food industry, pharmaceutical research or environmental analysis - chromatography opens up a treasure trove of information about the composition and quality of our samples. Discover the fascinating world of chromatography!
Topic World Chromatography
Chromatography enables us to separate, identify and thus understand complex substances. Whether in the food industry, pharmaceutical research or environmental analysis - chromatography opens up a treasure trove of information about the composition and quality of our samples. Discover the fascinating world of chromatography!