29-Jun-2009 - University of Birmingham

New nanoparticles could revolutionize therapeutic drug discovery

A new protein stabilisation technique has been developed by scientists funded by the Biotechnology and Biological Sciences Research Council (BBSRC) which could lead to 30 per cent more proteins being available as potential targets for drug development - opening up exciting possibilities in drug discovery.

Understanding the structure of proteins is a vital first step in developing new drugs, but to date, drug development has been slowed because due to their instability, proteins are difficult to work with in lab conditions. However, using nanoparticles, scientists from the Universities of Birmingham and Warwick have found a way to preserve membrane proteins intact, enabling detailed analysis of their structure and molecular functions. These new findings published in the Journal of the American Chemical Society will give scientists access to previously ignored proteins deemed too unstable to work with.

Professor Michael Overduin, from the University of Birmingham, who led the study, explained: "We have shown how a polymer can wrap around and preserve membrane proteins intact in stable nanoparticles. Membrane proteins are the most valuable but technically challenging targets for drug discovery. Finding a gentle solution that preserves their structure and activity, yet is robust enough for experimental interrogation, has eluded scientists for decades, but is now available."

Using a polymer - styrene maleic acid lipid particles (SMALPs), the researchers solubilised a pair of membrane proteins. They found that not only did the proteins maintain their folded structure, binding and enzyme activities in the SMALPs, but also that using the nanoparticles allowed them to be simply and rapidly used for virtually any laboratory analysis. Advantages of SMALPs over traditional ways to solubilise proteins such as detergents include enhanced stability, activity and spectral quality of the protein membranes.

Dr Tim Dafforn who jointly ran the study, said: "In the past, studies have concentrated largely on soluble proteins as membrane proteins are so difficult to make. However, the discovery of the SAMLPs removes this barrier and opens up access to membrane proteins - this has exciting clinical implications as it may enable drug discovery on receptors that are currently too difficult to produce or study by current methods."

Facts, background information, dossiers
  • proteins
  • nanoparticles
  • membrane proteins
  • drug development
  • solution
  • polymers
  • American Chemical Society
More about University of Birmingham
  • News

    Research paves the way for stronger alloys

    Scientists from the University of Birmingham have described how microscopic crystals grow and change shape in molten metals as they cool, in research that is breaking new ground in alloy research and paves the way for improving the tensile strength of alloys used in casting and welding.  Th ... more

    New tool can identify harmful blue-green algae

    A new way to detect early signs of harmful blue-green algae, which bloom in lakes, rivers and reservoirs around the world, has been developed by researchers at the University of Birmingham together with researchers at the Culture Collection of Algae & Protozoa (CCAP), based at the Scottish ... more

    Scientists get £ 2 million to develop cancer imaging

    Scientists are set for a cash boost to develop the latest cancer imaging technologies. Cancer experts at Durham and Newcastle universities will receive more than £2 million over the next five years. The money is part of a £50 million nationwide initiative to establish the UK as a world le ... more

More about Biotechnology and Biological Sciences Research Council
  • News

    Caterpillars tell us how bacteria cause disease

    Caterpillars and other invertebrates are helping to provide a cheap, easy and safe way to identify the genes which help bacteria cause infections in humans. Researchers from the University of Bath have discovered a way to sort through large numbers of bacterial gene sequences by testing the ... more

More about American Chemical Society
  • News

    Detecting nanoplastics in the air

    Large pieces of plastic can break down into nanosized particles that often find their way into the soil and water. Perhaps less well known is that they can also float in the air. It’s unclear how nanoplastics impact human health, but animal studies suggest they’re potentially harmful. As a ... more

    Exposing what’s in tattoo ink

    From life-like faces to elaborate nature scenes, tattoos are a true art form. Although people have decorated their bodies for millennia for ceremonial and religious reasons, many people today adorn themselves with these images as a form of self-expression. But the inks used for tattoos are ... more

    ‘E-nose’ sniffs out mixtures of volatile organic compounds

    As paint thinner, ink and adhesives dry, they can release volatile organic compounds (VOCs), which can negatively impact health. Typically, one of those VOCs is xylene, which exists as three isomers with the same elements but slightly different arrangements. Because the isomers are so simil ... more

  • Videos

    The chemicals we leave behind

    The products we use every day leave behind chemical footprints. Learn how and why researchers are now studying those trails. Mass spectrometry is helping researchers learn more about our interactions with the everyday chemicals we use, such as DEET, caffeine, even medications. In this episo ... more

More about University of Warwick