Das Proton präzise gewogen

20.07.2017

Max Planck Institute for Nuclear Physics

Penningfallen-Apparatur zur Bestimmung der Masse des Protons. An die zylindrischen Elektroden (gelb) angelegte unterschiedliche elektrische Spannungen generieren das Speicherpotential (rote Linie).

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in Heidelberg (MPIK) nicht nur just for fun oder um einen neuen Rekord aufzustellen. Das Proton ist der Kern des Wasserstoffatoms und Baustein in allen anderen Atomkernen. Die Protonenmasse ist daher eine wichtige Größe in der Atomphysik: Sie beeinflusst unter anderem, wie sich die Elektronen um den Atomkern bewegen. Der Einfluss zeigt sich in den Spektren, also welche Lichtfarben (Wellenlängen) Atome absorbieren und wieder abstrahlen können. Indem man diese Wellenlängen mit theoretischen Vorhersagen vergleicht, kann man fundamentale physikalische Theorien prüfen. Des Weiteren soll ein präziser Vergleich der Massen des Protons und des Antiprotons bei der Suche nach dem entscheidenden Unterschied – außer dem umgekehrten Vorzeichen der Ladung – zwischen Materie und Antimaterie helfen. Dieser Unterschied ist winzig, aber es muss ihn geben, denn das Universum besteht praktisch vollständig aus Materie, obwohl im Urknall Materie und Antimaterie in gleichen Mengen entstanden sein müssen.

Als geeignete „Waagen“ für Ionen haben sich Penningfallen bewährt. In solch einer Falle kann man einzelne geladene Teilchen, wie z.B. ein Proton, mit Hilfe von elektrischen und magnetischen Feldern nahezu ewig einsperren. Das gefangene Teilchen führt in der Falle eine charakteristische Bewegung aus, die durch drei Frequenzen beschrieben wird – und diese lassen sich messen und daraus die Masse des Teilchens berechnen. Um dabei die angestrebte hohe Präzision zu erreichen, war eine ausgefeilte Messtechnik erforderlich.

Der Massenstandard für Atome ist das Kohlenstoffisotop 12C, das per Definition 12 atomare Masseneinheiten schwer ist. „Wir haben es als direkten Vergleich herangezogen“, berichtet Sven Sturm. „Zunächst haben wir je ein Proton und ein Kohlenstoffion (12C6+) in getrennten Abteilen unserer Penningfallen-Apparatur gespeichert, dann abwechselnd je eines der beiden Ionen in das in der Mitte liegende Messabteil geschleust und ihre Bewegung darin vermessen.“ Das Verhältnis der beiden Messwerte ergibt die Masse des Protons direkt in atomaren Einheiten. Das Messabteil ist mit einer eigens dafür entwickelten speziellen Elektronik ausgestattet. Andreas Mooser vom RIKEN in Japan erklärt deren Zweck: „Sie ermöglichte es uns, das Proton trotz seiner etwa 12-mal geringeren Masse und 6-mal kleineren Ladung unter identischen Bedingungen zu messen wie das Kohlenstoffion.“

Das Resultat für die Masse des Protons von 1,007276466583(15)(29) atomaren Masseneinheiten ist dreimal genauer als der derzeit empfohlene Wert, wobei die Zahlen in Klammern die statistische und systematische Unsicherheit angeben.

Jedoch ist der neue Wert signifikant kleiner als der aktuelle Standardwert. Messungen anderer Autoren wiesen bei der Masse des Tritiumatoms, des schwersten Wasserstoffisotops (T = 3H), und der Masse von leichtem Helium (3He) im Vergleich zum „halbschweren“ Wasserstoffmolekül HD (D = 2H, Deuterium, schwerer Wasserstoff) Unstimmigkeiten auf. „Unser Ergebnis trägt dazu bei, dieses Rätsel zu lösen, weil es die Protonenmasse in die richtige Richtung korrigiert“, zeigt sich Klaus Blaum erfreut.

Florian Köhler-Langes vom MPIK erklärt, wie die Forscher die Genauigkeit ihrer Messung noch weiter steigern wollen: „In Zukunft werden wir ein drittes Ion in unserem Fallenturm speichern. Indem wir die Bewegung dieses Referenzions gleichzeitig messen, können wir den Unsicherheitsfaktor eliminieren, der von Schwankungen des Magnetfelds herrührt.“

Fakten, Hintergründe, Dossiers
  • Protonen
  • Präzisionsmesstechnik
  • MPI für Kernphysik
  • Atomkerne
  • Atomphysik
  • Penningfallen
  • Riken
Mehr über MPI für Kernphysik
  • News

    Zeitmessung ohne Stoppuhr

    Die durch einen starken Laserpuls angetriebene Schwingung von Elektronen lässt sich aus einer einzelnen Messung des Absorptionsspektrums rekonstruieren. Hierfür sind keine Pump- und Probepulse als Start- und Stoppsignale erforderlich. Das neue Konzept verspricht zukünftige Anwendungen für u ... mehr

    Scharfe Röntgenblitze aus dem Atomkern

    Röntgenlicht macht das Unsichtbare sichtbar: Sie erlauben die atomgenaue Aufklärung, wie Materialien aufgebaut sind, in den 1950er-Jahren enthüllten sie etwa die der Doppelhelix-Struktur des Erbgutmoleküls DNS. Mit neuen Röntgenquellen wie dem Freie-Elektronen-Laser XFEL in Hamburg lassen s ... mehr

    Magnetische Kraft von einzelnen Antiprotonen mit höchster Genauigkeit bestimmt

    So offensichtlich es ist, dass Materie existiert, ebenso rätselhaft ist noch immer ihre Herkunft. Wissenschaftler suchen daher nach dem kleinen Unterschied zwischen einem Teilchen und seinem Antiteilchen, der die Existenz von Materie erklären könnte. Die BASE-Kollaboration am Forschungszent ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    10-fach schnellere Superauflösungsmikroskopie

    Fortschritte in der Fluoreszenzmikroskopie ermöglichen es, biologische Prozesse unterhalb der klassischen Beugungsgrenze des Lichtes sichtbar zu machen. Eine Variante dieser sogenannten Superauflösungstechniken ist DNA-PAINT, die von Ralf Jungmann, Forschungsgruppenleiter für "Molekulare Bi ... mehr

    Biomarker verraten Gesundheit im Alter

    Alternsforscher des Max-Planck-Instituts für Biologie des Alterns und des Leiden University Medical Center (LUMC) wollen grundlegende Erkenntnisse aus der Forschung an Tiermodellen auf die Ursachen des Alterns im Menschen übertragen. Sie haben nun eine Kombination von Biomarkern im Blut ent ... mehr

    Direkte Abbildung von Riesenmolekülen

    Die optische Auflösung einzelner Konstituenten herkömmlicher Moleküle ist aufgrund der kleinen Bindungslänge im Sub-Nanometerbereich bisher nicht möglich. Physikern unter Leitung von Prof. Immanuel Bloch, Direktor der Abteilung Quantenvielteilchensysteme am MPQ,  ist es nun jedoch gelungen, ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.