04.09.2020 - Max-Planck-Institut für Kernphysik

Masse des Deuterons korrigiert

Mit ausgefeilter Messtechnik zu höchster Präzision

Hochpräzise Messungen der Masse des Deuterons, des Kerns von schwerem Wasserstoff, bringen neue Erkenntnisse über die Zuverlässigkeit fundamentaler Größen der Atom- und Kernphysik. Das berichtet eine Kollaboration unter der Leitung des MPI für Kernphysik mit Partnern der Johannes Gutenberg-Universität Mainz, des GSI Helmholtzzentrums für Schwerionenforschung Darmstadt sowie des Helmholtz-Instituts Mainz in der Fachzeitschrift „Nature“. Damit stehen nun direkt auf den atomaren Massenstandard bezogene Daten für Wasserstoff H, Deuterium D und das Molekül HD, das die Wissenschaftler ebenfalls neu gewogen haben, zur Verfügung.

Die Massen der Atomkerne wie auch die des Elektrons beeinflussen zahlreiche Eigenschaften von Atomen und Molekülen, beispielsweise ihre Spektren – also welche Lichtfarben sie absorbieren oder emittieren. Physiker wünschen sich möglichst genaue Werte dieser Massen, denn nur mit deren Kenntnis ist es möglich, die Spektren mit Hilfe der Atomphysik präzise zu berechnen – um sie dann mit direkten Messungen zu vergleichen und so beispielsweise Rückschlüsse auf die Zuverlässigkeit der grundlegenden physikalischen Theorien zu ermöglichen.

Von besonderem Interesse sind in diesem Kontext Wasserstoff und seine Isotope, denn deren einfache Elektronenhülle mit nur einem einzigen Elektron lässt extrem präzise Berechnungen und damit sehr sensitive Tests grundlegender physikalischer Theorien zu. Darüber hinaus lässt sich aus der Masse des Deuterons auch die Masse des Neutrons – des zweiten Bestandteils der Atomkerne neben dem Proton – ableiten. Nachdem sie in den letzten Jahren schon das Elektron und das Proton, den Kern des gewöhnlichen Wasserstoffatoms, präzise gewogen hatten, haben Forscher um Klaus Blaum und Sven Sturm vom MPI für Kernphysik jetzt auch das Deuteron, den Kern von schwerem Wasserstoff, bestehend aus einem Proton und einem Neutron, sowie das HD⁺-Molekülion auf die „Präzisionswaage“ gelegt. Da Deuterium selten ist und normalerweise leicht durch den viel häufigeren normalen Wasserstoff ersetzt wird, hat die Arbeitsgruppe von Christoph Düllmann in Mainz eine spezielle Deuterium-Probe passgenau für die verwendete Apparatur hergestellt.

Als Präzisionswaagen für Ionen haben sich Penningfallen bewährt. In solch einer Falle kann man einzelne geladene Teilchen mit Hilfe von elektrischen und magnetischen Feldern für lange Zeit einsperren. Das gefangene Teilchen führt in der Falle eine charakteristische Bewegung aus, die durch eine Frequenz beschrieben wird. Diese Frequenz hängt von der Masse des gefangenen Teilchens ab – schwerere Teilchen schwingen langsamer als leichtere. Wenn man nun zwei unterschiedliche, einzelne Ionen nacheinander in der gleichen Falle vermisst, kann man so das Verhältnis der Massen exakt ermitteln – ähnlich wie auf einer klassischen mechanischen Balkenwaage.

Mit ausgefeilter Messtechnik zu höchster Präzision

Der Massenstandard für Atome ist das Kohlenstoffisotop ¹²C, das per Definition 12 atomare Masseneinheiten schwer ist. „Unsere LIONTRAP genannte Penningfallen-Apparatur befindet sich in nahezu perfektem Vakuum bei einer Temperatur von etwa 4 Grad über dem absoluten Nullpunkt (–269°C) in einem supraleitenden Magneten. Darin haben wir je ein Deuteron (D⁺) und ein Kohlenstoffion (¹²C⁶⁺) präpariert, abwechselnd eines davon aus seiner Speicherfalle in die dazwischen eingebaute Präzisionsfalle transferiert und seine Bewegung genauestens vermessen“, erklärt Sascha Rau, der die Messungen im Rahmen seiner Dissertation durchgeführt hat, das Messprinzip. „Aus dem so erhaltenen Verhältnis der Frequenzen beider Ionen ergibt sich direkt die Masse des Deuterons in atomaren Einheiten.“ Das Kohlenstoffion agiert also als Referenzgewicht auf der „Balkenwaage“.

Bei der Auswertung der Messdaten mussten die Physiker eine Vielzahl an unvermeidlichen systematischen Effekten sehr sorgfältig berücksichtigen. Als Ergebnis erhielten sie die Masse des Deuterons zu 2,013553212535(17) atomaren Einheiten, wobei die Zahl in Klammern die Unsicherheit der letzten Stellen angibt. Die mit derselben Methode bestimmte Masse des Wasserstoff-Molekülions HD⁺ beträgt 3,021378241561(61) atomare Einheiten.

Der neue Wert für die Masse des Deuterons ist der genaueste jemals gemessene, ist aber signifikant kleiner als der tabellierte Referenzwert. „Um unser Ergebnis zu validieren, haben wir damit und mit den früher von uns gemessenen Massen des Protons und des Elektrons sowie der bekannten Bindungsenergie die Masse von HD⁺ berechnet. Das Resultat stimmt hervorragend mit unserem direkt gemessenen Wert überein. Außerdem passt das aus unseren Daten abgeleitete Massenverhältnis von Deuteron zu Proton sehr gut zu dem von einer anderen Gruppe direkt gemessenen Wert“, freut sich Sven Sturm. Diese Konsistenz der Daten untermauert die verwendete Messmethodik und legt es nahe, dass die Referenzwerte korrigiert werden sollten. Außerdem verringern die neuen Daten die bisher bei den Massen leichter Kerne bestehenden Diskrepanzen erheblich. Um diese jedoch vollständig aufzuklären, sind weitere hochpräzise Massenmessungen – direkt in atomaren Einheiten – an überschwerem Wasserstoff (Tritium) und leichtem Helium erforderlich.

Fakten, Hintergründe, Dossiers
  • Deuteron
  • Atomkerne
  • Atome
  • Wasserstoff
  • Kernphysik
  • Penningfallen
Mehr über MPI für Kernphysik
  • News

    Eine Ameise auf einem Elefanten wiegen: Quantensprung auf der Waage

    Ein neuer Zugang zur Quantenwelt: Wenn ein Atom beim Quantensprung eines Elektrons Energie aufnimmt oder abgibt, wird es schwerer oder leichter. Ursache ist Einsteins E = mc². Allerdings ist dieser Effekt bei einem einzelnen Atom ultraklein. Trotzdem gelang es nun einer internationalen Koop ... mehr

    Quantenlogik-Spektroskopie erschließt Potenzial hochgeladener Ionen

    Wissenschaftler der Physikalisch-Technischen Bundesanstalt (PTB) und des Max-Planck-Instituts für Kernphysik (MPIK) haben erstmals optische Messungen mit bislang unerreichter Präzision an hochgeladenen Ionen durchgeführt. Dazu isolierten sie ein einzelnes Ar¹³⁺-Ion aus einem extrem heißen P ... mehr

    Verzerrte Atome

    Mit zwei Experimenten am Freie-Elektronen-Laser FLASH in Hamburg gelang es einer Forschergruppe unter Führung von Physikern des Max-Planck-Instituts für Kernphysik (MPIK) in Heidelberg, starke nichtlineare Wechselwirkungen ultrakurzer extrem-ultravioletter (XUV) Laserpulse mit Atomen und Io ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Neue Methode: Y-Chromosomen von Neandertalern und Denisovanern entziffert

    Ein internationales Forschungsteam unter der Leitung von Martin Petr und Janet Kelso vom Max-Planck-Institut für evolutionäre Anthropologie in Leipzig hat die Y-Chromosomen-Sequenzen von drei Neandertalern und zwei Denisova-Menschen bestimmt. Diese Y-Chromosomen liefern neue Einblicke in di ... mehr

    Neuartiges Mikroskop erkennt die Händigkeit eines einzelnen Nanoteilchens

    Wissenschaftler der Forschungsgruppe Mikro, Nano und Molekulare Systeme am Max-Planck-Institut für Intelligente Systeme haben ein neuartiges Spektroskopie-Mikroskop entwickelt, mit dem sie ein einzelnes Nanoteilchen in Echtzeit beobachten können. So konnten sie erstmals die Händigkeit eines ... mehr

    Proteine ganz nah

    Die von Nobelpreisträger Stefan Hell und seinem Team entwickelte MINFLUX-Nanoskopie ermöglicht, fluoreszierende Moleküle mit Licht getrennt abzubilden, die nur ein paar Nanometer (millionstel Millimeter) voneinander entfernt sind. Diese Technik ist damit hundertmal schärfer als die herkömml ... mehr