KI hilft bei der Erkennung antibiotikaresistenter Bakterien
Ein erster wichtiger Schritt zur zukünftigen Integration von GPT-4 in die klinische Diagnostik
UZH
Die Forschenden nutzten KI, um einen gängigen Labortest zu interpretieren: den sogenannten Kirby-Bauer-Disk-Diffusionstest. Dieser Test zeigt den Ärztinnen und Ärzten, welche Antibiotika bei einer bestimmten bakteriellen Infektion wirksam sind und welche nicht. Basierend auf GPT-4 schufen die Wissenschaftler den «EUCAST-GPT-Experten», der den strengen Richtlinien des EUCAST, des European Committee on Antimicrobial Susceptibility Testing, zur Interpretation von Resistenzmechanismen folgt. Mit den neuesten Daten und Expertenregeln ausgestattet, wurde das System an Hunderten von Bakterien getestet. Und tatsächlich: Es half, Resistenzen gegen lebenswichtige Antibiotika zu erkennen.
Menschliche Experten sind genauer – aber KI ist schneller
«Antibiotikaresistenzen sind weltweit eine wachsende Bedrohung. Wir benötigen dringend schnellere und zuverlässigere Werkzeuge, um sie zu erkennen», sagt Studienleiter Egli. «Unsere Forschungsarbeit ist der erste Schritt, um KI in der Routinediagnostik einzusetzen, damit Ärztinnen und Ärzte resistente Bakterien schneller identifizieren können».
Zwar erzielte das KI-System gute Resultate bei der Erkennung bestimmter Resistenztypen, war aber nicht perfekt. Während es gut darin war, Bakterien zu erkennen, die gegen bestimmte Antibiotika resistent sind, markierte es manchmal Mikroben als resistent, obwohl sie es nicht waren. Und das könnte zu möglichen Verzögerungen bei der Behandlung führen. Im Vergleich waren menschliche Experten genauer in der Bestimmung von Resistenzen. Dennoch könnte das KI-System dabei helfen, den Diagnoseprozess zu standardisieren und zu beschleunigen.
KI-Werkzeug unterstützt medizinische Fachpersonen
Trotz der Einschränkungen hebt die Studie das transformative Potenzial hervor, das KI im Gesundheitswesen hat. Durch die standardisierte Interpretation komplexer Diagnosetests könnte KI letztendlich dazu beitragen, die Variabilität und Subjektivität manueller Auswertungen zu verringern und so die Ergebnisse für die Patienten zu verbessern.
Adrian Egli betont, dass weitere Tests und Verbesserungen erforderlich seien, bevor dieses KI-Tool in Krankenhäusern eingesetzt werden könne. «Unsere Studie ist ein wichtiger erster Schritt, aber wir sind noch weit davon entfernt, menschliche Expertise zu ersetzen. Vielmehr sehen wir KI als ein ergänzendes Werkzeug, das Mikrobiologinnen und -biologen in ihrer Arbeit unterstützen kann», so Egli.
Globale Entwicklung der Antibiotikaresistenz eindämmen
Gemäss der Studie hat KI das Potenzial, die weltweiten Anstrengungen zur Eindämmung der zunehmenden Antibiotikaresistenzen zu unterstützen. KI-basierte Diagnostiksysteme könnten zukünftig Labore überall auf der Welt dabei unterstützen, arzneimittelresistente Bakterieninfektionen schneller und präziser zu erkennen – und so die Wirksamkeit bestehender Antibiotika zu erhalten.
Originalveröffentlichung
Meistgelesene News
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Analytik- und Labortechnik-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Analytik und Labortechnik bringt Sie jeden Dienstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.