11.06.2020 - Johann Wolfgang Goethe-Universität Frankfurt (Main)

Momentaufnahmen von explodierendem Sauerstoff

Neue Experimentiertechnik mit Reaktionsmikroskop ermöglicht das „Röntgen“ einzelner Moleküle

Seit mehr als 200 Jahren nutzen Menschen Röntgenstrahlen, um ins Innere der Materie zu schauen. Dabei dringen sie zu immer kleineren Strukturen vor – vom Kristall bis zum Nanopartikel. Jetzt ist Physikern der Goethe-Universität im Rahmen einer großen internationalen Kollaboration am Röntgenlaser European XFEL in Schenefeld bei Hamburg ein qualitativer Sprung gelungen: Mit einer neuen Experimentiertechnik können sie erstmals auch einzelne Moleküle wie Sauerstoff „röntgen“ und sich ihre Bewegung im Mikrokosmos anschauen.

„Je kleiner das Teilchen, desto größer der Hammer.“ Diese Regel aus der Teilchenphysik, die mit riesigen Beschleunigern ins Innere der Atomkerne schaut, gilt auch für diese Forschungsarbeit. Um ein zweiatomiges Molekül wie den Sauerstoff „röntgen“ zu können, braucht man extrem starke und ultrakurze Röntgenpulse. Solche liefert der 2017 in Betrieb gegangene European XFEL, eine der stärksten Röntgenquellen der Welt..

Um einzelne Moleküle zu belichten braucht man außerdem eine neue Röntgentechnik: Mithilfe der extrem starken Laserpulse raubt man dem Molekül innerhalb kürzester Zeit zwei fest gebundene Elektronen. Dadurch entstehen zwei positiv geladene Ionen, die aufgrund der elektrischen Abstoßung explosionsartig auseinanderfliegen. Gleichzeitig macht man sich zunutze, dass Elektronen sich auch wie Wellen verhalten. „Man kann sich das wie bei einem Echolot vorstellen“, erklärt Projektleiter Prof. Till Jahnke vom Institut für Kernphysik. „Die Elektronen-Welle wird während der Explosion am Molekülgerüst gebrochen. Wir haben das entstehende Brechungsmuster aufgenommen. So konnten wir das Molekül quasi von innen durchleuchten und ihm in mehreren Schritten beim Aufbruch zuschauen.“

Für diese als "Electron-Diffraction-Imaging" bezeichnete Technik haben die Physiker am Institut für Kernphysik über mehrere Jahre die dort erdachte COLTRIMS-Technik (die oftmals auch als „Reaktionsmikroskop“ bezeichnet wird) weiterentwickelt. Unter Leitung von Dr. Markus Schöffler wurde eine entsprechende Apparatur im Vorfeld für die Anforderungen am European XFEL angepasst und im Rahmen einer Doktorarbeit von Gregor Kastirke entworfen und verwirklicht. Beileibe keine einfache Aufgabe, wie Till Jahnke feststellt: „Wenn ich ein Raumschiff entwerfen müsste, um mit diesem heil zum Mond und zurück zu fliegen, würde ich definitiv Herrn Kastirke in meinem Team dabeihaben wollen. Ich bin sehr beeindruckt, was er hier geleistet hat.“

Das Ergebnis, das in der aktuellen Ausgabe der Physical Review X publiziert wurde, ist ein erster Nachweis dafür, dass diese Experimentiermethode funktioniert. Künftig könnten damit photochemische Reaktionen einzelner Moleküle durch solche zeitlich hoch aufgelösten Bilder untersucht werden. Zum Beispiel ließe sich die Reaktion eines mittelgroßen Moleküls auf UV-Strahlung in Echtzeit beobachten. Zusätzlich handelt es sich um die ersten Messergebnisse, die seit der Inbetriebnahme der Small Quantum Systems (SQS)-Experimentierstation am European XFEL Ende 2018 veröffentlicht wurden.

Johann Wolfgang Goethe-Universität Frankfurt (Main)

Jetzt Infos anfordern

News weiterempfehlen PDF Ansicht / Drucken

Teilen bei

Fakten, Hintergründe, Dossiers
  • Sauerstoff
  • Reaktionsmikroskopie
  • photochemische Reaktionen
Mehr über Uni Frankfurt am Main
  • News

    Neues Verfahren erhöht Testkapazitäten zum Coronavirus-Nachweis dramatisch

    Forschern des Blutspendedienstes des Deutschen Roten Kreuzes in Frankfurt um Prof. Erhard Seifried und dem Institut für Medizinische Virologie des Universitätsklinikums der Goethe-Universität Frankfurt um Prof. Sandra Ciesek ist es gelungen, ein Verfahren zu entwickeln, das es ermöglicht, d ... mehr

    Minutiöse Einblicke in das zelluläre Geschehen

    Noch detailliertere Einblicke in die Zelle sind künftig möglich mit Hilfe einer Neuentwicklung, an der die Goethe-Universität beteiligt war: Der Arbeitsgruppe um Prof. Harald Schwalbe ist es gemeinsam mit Wissenschaftlern aus Israel gelungen, die Kernspinresonanz (NMR)-Methode zur Untersuch ... mehr

    Detaillierter Einblick in die gestresste Zelle

    Wenn Zellen in Stress geraten, so läuft ein komplexes und genau reguliertes Programm ab, um bleibende Schäden abzuwenden. Als schnelle Reaktion nach einem Stress-Signal wird beispielsweise die Herstellung von Proteinen (Proteinsynthese) heruntergefahren. Bislang war es kaum möglich, solche ... mehr

Mehr über European XFEL
  • News

    Erste molekulare Filme am European XFEL

    Ein internationales Forscherteam hat den ersten Film von der Dynamik eines Biomoleküls am europäischen Röntgenlaser European XFEL aufgenommen. In einem in „Nature Methods“ veröffentlichten Fachartikel zeigen die Wissenschaftler, wie sich die hohe Wiederholrate der Röntgenpulse am European X ... mehr

    Teilchenbeschleuniger des Röntgenlasers European XFEL in Betrieb

    Der internationale Röntgenlaser European XFEL hat einen der letzten großen Meilensteine auf dem Weg zum Beginn der wissenschaftlichen Experimente erreicht: DESY hat den Teilchenbeschleuniger, der den Röntgenlaser antreibt, erfolgreich auf voller Länge in Betrieb genommen. Es ist der weltwei ... mehr

    Wissenschaftler blicken tief ins Atom

    Eine Kooperation aus Theorie- und Experimentalphysikern hat bislang unbekannte Quantenzustände im inneren von Atomen entdeckt. Die Beobachtungen, die im Fachblatt „Nature Communications“ veröffentlicht sind, ermöglichen ein besseres Verständnis bestimmter Verhaltensweisen von Elektronen in ... mehr