21-Sep-2017 - Karlsruher Institut für Technologie (KIT)

Tiny lasers from a gallery of whispers

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a phenomenon similar to an effect observed in circular galleries, such as in some cathedrals or museums, where sound waves travel across the gallery and are reflected and refocused tightly enough that a whisper on one side can be heard on the other.

The same phenomenon applies to light. When light is stored in ring-shaped or spherical active resonators, the waves superimpose in such a way that it can result in laser light. This week investigators report a new type of dye-doped WGM micro-laser that produces light with tunable wavelengths. Not only is the tuning range of the new devices broader than has been possible in the past, it is completely reversible.

A unique feature of the design, according to lead author Tobias Siegle of Karlsruhe Institute of Technology in Germany, is that tuning is made possible by changing the size of a flexible substrate. Stretching the substrate changes the distance between the two sides of the split disk in the resonator and thus, the wavelength of the light produced.

The disk itself is typically about 25 microns across, with an initial gap between its two halves of roughly 2.5 microns, just 3 percent the diameter of a typical human hair. The disk is mounted on an elastomer, or stretchy plastic substrate, which can be pulled in a direction perpendicular to the disk's split, decreasing the gap size. The light produced by these micro-lasers shifts toward the blue range of the spectrum when the gap size decreases. They observed wavelength shifts of several nanometers in the visible range.

"Our new design produces a broad tuning range that cannot be easily achieved with other WGM resonators," Siegle said. "Additionally, the tuning mechanism is completely reversible."

This feature allows the device to be used in fundamental optics research. Another feature of the split-disk technology is enhanced sensitivity in refractive index sensing.

"For a gap width of 1.4 microns, the sensing performance is increased by 65 percent," Siegle said, when comparing to a reference disk resonator without a gap.

The most useful devices have a low lasing threshold, since this allows the use of small amounts of energy. A low threshold reduces or prevents photo-bleaching of the dye molecules used in the device and increases its expected lifetime. The investigators tested their design and found low-threshold lasing for split disks fabricated using a 3-D or electron-beam lithography technique.

Another quantity they studied is the quality, or Q factor, which corresponds to the photon storage time in the laser cavity. A high Q value is desirable, and although investigators found that their split-disk design reduced Q somewhat, the lasing threshold was within an appropriate range, making the design valuable.

Future work will be focused on developing tunable coupled resonator waveguides, which can be used as optical delay lines or filters, and in other applications.

Karlsruher Institut für Technologie (KIT)

Request information now

Recommend news PDF version / Print

Share on

Facts, background information, dossiers
  • light
  • resonators
  • physics
  • electron beam lithography
  • filters
  • sound waves
More about KIT
  • News

    ‘E-nose’ sniffs out mixtures of volatile organic compounds

    As paint thinner, ink and adhesives dry, they can release volatile organic compounds (VOCs), which can negatively impact health. Typically, one of those VOCs is xylene, which exists as three isomers with the same elements but slightly different arrangements. Because the isomers are so simil ... more

    Neutrinos are lighter than 0.8 electron volts

    The international KArlsruhe TRItium Neutrino Experiment (KATRIN), located at Karlsruhe Institute of Technology (KIT), has broken an important "barrier" in neutrino physics which is relevant for both particle physics and cosmology. Based on data published in the prestigious journal Nature Ph ... more

    Taking Microbes Out of Dark and Into the Light

    Microorganisms are the oldest, most abundant, and most diverse life forms on earth and offer enormous potential for biotechnological applications. To date, however, only a fraction of them could be isolated and cultivated. The “MicroMATRIX” research project, funded with EUR 1.5 million by t ... more

More about American Institute of Physics
  • News

    COVID-19 testing method gives results within one second

    The COVID-19 pandemic made it clear technological innovations were urgently needed to detect, treat, and prevent the SARS-CoV-2 virus. A year and a half into this epidemic, waves of successive outbreaks and the dire need for new medical solutions -- especially testing -- continue to exist. ... more

    Cellphone converts into powerful chemical detector

    Scientists from Texas A&M have developed an extension to an ordinary cellphone that turns it into an instrument capable of detecting chemicals, drugs, biological molecules, and pathogens. The advance is reported in Reviews of Scientific Instruments, by AIP Publishing. Modern cellphones incl ... more

    Tiny brains grown in 3D-printed bioreactor

    Scientists from MIT and the Indian Institute of Technology Madras have grown small amounts of self-organizing brain tissue, known as organoids, in a tiny 3D-printed system that allows observation while they grow and develop. The work is reported in Biomicrofluidics, by AIP Publishing. Curre ... more