Sensors detect disease markers in breath

19-May-2017

Photo by L. Brian Stauffer

The researchers made sensors from porous thin films of organic conductive plastics with the goal of portable, disposable devices for medical and environmental monitoring.

A small, thin square of an organic plastic that can detect disease markers in breath or toxins in a building's air could soon be the basis of portable, disposable sensor devices. By riddling the thin plastic films with pores, University of Illinois researchers made the devices sensitive enough to detect at levels that are far too low to smell, yet are important to human health.

In a new study professor Ying Diao's research group demonstrated a device that monitors ammonia in breath, a sign of kidney failure.

"In the clinical setting, physicians use bulky instruments, basically the size of a big table, to detect and analyze these compounds. We want to hand out a cheap sensor chip to patients so they can use it and throw it away," said Diao, a professor of chemical and biomolecular engineering at Illinois.

Other researchers have tried using organic semiconductors for gas sensing, but the materials were not sensitive enough to detect trace levels of disease markers in breath. Diao's group realized that the reactive sites were not on the surface of the plastic film, but buried inside it.

"We developed this method to directly print tiny pores into the device itself so we can expose these highly reactive sites," Diao said. "By doing so, we increased the reactivity by ten times and can sense down to one part per billion."

For their first device demonstration, the researchers focused on ammonia as a marker for kidney failure. Monitoring the change in ammonia concentration could give a patient an early warning sign to call their doctor for a kidney function test, Diao said.

The material they chose is highly reactive to ammonia but not to other compounds in breath, Diao said. But by changing the composition of the sensor, they could create devices that are tuned to other compounds. For example, the researchers have created an ultrasensitive environmental monitor for formaldehyde, a common indoor pollutant in new or refurbished buildings.

The group is working to make sensors with multiple functions to get a more complete picture of a patient's health.

"We would like to be able to detect multiple compounds at once, like a chemical fingerprint," Diao said. "It's useful because in disease conditions, multiple markers will usually change concentration at once. By mapping out the chemical fingerprints and how they change, we can more accurately point to signs of potential health issues."

University of Illinois at Urbana-Champaign

Request information now

Recommend news PDF version / Print

Share on

Facts, background information, dossiers
  • kidney failure
  • trace gas analyzers
  • trace analysis
  • disease markers
  • thin films
More about UIUC
  • News

    Growth factors in single cells counted for the first time

    Whether healthy or diseased, human cells exhibit behaviors and processes that are largely dictated by growth factor molecules, which bind to receptors on the cells. For example, growth factors tell the cells to divide, move, and when to die--a process known as apoptosis. When growth factor ... more

    Novel quantum dots enhance cell imaging

    A team of researchers from the University of Illinois at Urbana-Champaign and Mayo Clinic have engineered a new type of molecular probe that can measure and count RNA in cells and tissue without organic dyes. The probe is based on the conventional fluorescence in situ hybridization (FISH) t ... more

    New informatics tool makes the most of genomic data

    The rise of genomics, the shift from considering genes singly to collectively, is adding a new dimension to medical care; biomedical researchers hope to use the information contained in human genomes to make better predictions about individual health, including responses to therapeutic drug ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE