New Endoscopic Technique
Flexible wide-field endoscope provides label-free contrast of tissue based on fluorescence lifetime imaging of tissue autofluorescence
fluorescence lifetime imaging (FLIM) of tissue autofluorescence has been shown to provide labelfree contrast between different types and states of tissue. Clinical FLIM can combine lifetime contrast with morphological information to provide a direct comparison between different spatial regions – making it easier to spot differences with respect to “normal” tissue, e.g. for diagnostic screening and potentially enabling margins of diseased tissue to be identified. To date, however, there have been relatively few clinical FLIM studies, partly due to a lack of suitable instrumentation.
With the aim of applying FLIM to detect and monitor disease in internal organs such as the colon, a British team led by Hugh Sparks (Imperial College London) now developed a flexible wide-field FLIM endoscope based on coherent optical fibre bundles. The device utilizes low average power blue picosecond laser diode excitation sources to induce tissue autofluorescence. Its multimode optical fibre efficiently delivers the excitation radiation to illuminate a 3 mm field of view.
Unfortunately, the multimodal optical fibre propagation necessary to achieve this broad illumination can lead to errors in the lifetime determination due to temporal broadening of the excitation pulses. To address this issue, the researchers characterized the consequent degradation of the spatio-temporal instrument response function (IRF) and incorporated a spatially varying temporal instrument response function in the FLIM analysis.
As prove of principle, the scientists applied their new FLIM endoscope to ex vivo tissue autofluorescence from diseased human larynx biopsies. Using a gain-switched picosecond diode laser operating at 445 nm as the excitation source and an average excitation power of circa 0.5 mW, mm-scale spatial maps of autofluorescence lifetimes could be acquired in about 8 seconds.
To illustrate the instrument’s potential for FLIM at higher acquisition rates, a higher power mode-locked frequency doubled Ti : Sapphire laser was used to carry out FLIM of ex vivo mouse bowel at up to 2.5 Hz using 10 mW of average excitation power at the specimen.
The results demonstrate the potential of the technique to screen for neoplasia. Based on the flexible wide-field FLIM endoscope, new clinical instrumentation may be developed to aid diagnosis and monitoring of therapeutic interventions.
Original publication
Most read news
Original publication
Hugh Sparks, Sean Warren, Joana Guedes, Nagisa Yoshida, Tze Choong Charn, Nadia Guerra, Taranjit Tatla, Christopher Dunsby, and Paul French; "A flexible wide-field FLIM endoscope utilising blue excitation light for label-free contrast of tissue."; J. Biophotonics 8:1, 2015.
Organizations
Other news from the department science
Get the analytics and lab tech industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
Most read news
More news from our other portals
See the theme worlds for related content
Last viewed contents
Using AI to identify genetic perturbations from cell images - Newly founded start-up aims to use findings to treat previously incurable fibrosis
Design organoids with light - Organoids help researchers understand biological processes in health and disease
Munich-based lab automation startup raised €2.77M - AI-driven biotech research: Connected labs for faster scientific progress
ECHA calls for information to avoid unneccessary animal testing
Diagnostic biosensor quickly detects SARS-CoV-2 from nasopharyngeal swabs - New test analyzes patient samples without any sample preparation steps
The protective armor of superbug C.difficile revealed - Spectacular structure of chain-mail may explain the success of C.diff at defending itself against antibiotics and immune system molecules
Merck and imec Collaborate to Develop Disruptive Microphysiological Systems Platform - The collaboration programme is open to further partners
Ångström-Resolution Fluorescence Microscopy - This innovation is poised to usher in a paradigm shift in our approach to study biological systems with thus far unprecedented detail
A new way to stimulate cellular recycling process
A milestone on the pathway to Lab 4.0: A new standard for the smart lab - SPECTARIS presents the first industrial communication standard for laboratory and analytical devices