12-Mar-2021 - Charité - Universitätsmedizin Berlin

AI-based analysis system for the diagnosis of breast cancer

For the first time, morphological, molecular and histological data are integrated in a single analysis

Researchers at TU Berlin and Charité – Universitätsmedizin Berlin as well as the University of Oslo have developed a new tissue-section analysis system for diagnosing breast cancer based on artificial intelligence (AI). Two further developments make this system unique: For the first time, morphological, molecular and histological data are integrated in a single analysis. Secondly, the system provides a clarification of the AI decision process in the form of heatmaps. Pixel by pixel, these heatmaps show which visual information influenced the AI decision process and to what extent, thus enabling doctors to understand and assess the plausibility of the results of the AI analysis. This represents a decisive and essential step forward for the future regular use of AI systems in hospitals.

Cancer treatment is increasingly concerned with the molecular characterization of tumor tissue samples. Studies are conducted to determine whether and/or how the DNA has changed in the tumor tissue as well as the gene and protein expression in the tissue sample. At the same time, researchers are becoming increasingly aware that cancer progression is closely related to intercellular cross-talk and the interaction of neoplastic cells with the surrounding tissue - including the immune system.

Image data provide high spatial detail

Although microscopic techniques enable biological processes to be studied with high spatial detail, they only permit a limited measurement of molecular markers. These are rather determined using proteins or DNA taken from tissue. As a result, spatial detail is not possible and the relationship between these markers and the microscopic structures is typically unclear. “We know that in the case of breast cancer, the number of immigrated immune cells, known as lymphocytes, in tumor tissue has an influence on the patient’s prognosis. There are also discussions as to whether this number has a predictive value - in other words if it enables us to say how effective a particular therapy is,” says Professor Dr. Frederick Klauschen from the Institute of Pathology at the Charité.

“The problem we have is the following: We have good and reliable molecular data and we have good histological data with high spatial detail. What we don’t have as yet is the decisive link between imaging data and high-dimensional molecular data,” adds Professor Dr. Klaus-Robert Müller, professor of machine learning at TU Berlin. Both researchers have been working together for a number of years now at the national AI center of excellence the Berlin Institute for the Foundations of Learning and Data (BIFOLD) located at TU Berlin.

Missing link between molecular and histological data

It is precisely this symbiosis which the newly published approach makes possible. “Our system facilitates the detection of pathological alterations in microscopic images. Parallel to this, we are able to provide precise heatmap visualizations showing which pixel in the microscopic image contributed to the diagnostic algorithm and to what extent,” explains Müller. The research team has also succeeded in significantly further developing this process: “Our analysis system has been trained using machine learning processes so that it can also predict various molecular characteristics, including the condition of the DNA, the gene expression as well as the protein expression in specific areas of the tissue, on the basis of the histological images.

Next on the agenda are certification and further clinical validations - including tests in tumor routine diagnostics. However, Frederick Klauschen is already convinced of the value of the research: “The methods we have developed will make it possible in the future to make histopathological tumor diagnostics more precise, more standardized and qualitatively better.”

Charité - Universitätsmedizin Berlin

Recommend news PDF version / Print

Share on

Facts, background information, dossiers
  • breast cancer
  • cancer
  • cancer diagnostics
  • artificial intelligence
  • tumor diagnostics
More about Charité
  • News

    Could the blood of COVID-19 patients be used to predict disease progression?

    Researchers from Charité – Universitätsmedizin Berlin and the Francis Crick Institute have identified 27 proteins which are present at different levels in the blood of COVID-19 patients, depending on the severity of their symptoms. These biomarker profiles could be used to predict disease p ... more

    Diagnostics, meet CRISPR

    A new diagnostic test to quickly and easily monitor kidney transplant patients for infection and rejection relies on a simple urine sample and a powerful partner: the gene-editing technology CRISPR. Michael Kaminski, who developed it, leads a new Emmy Noether Group at the MDC & Charité. The ... more

    Recognise and control new variants of the deadly Ebola virus more quickly

    The situation is extraordinary: there have only ever been four declarations of public health emergencies of international concern in the past and now there are two at the same time. Whilst the risks associated with the novel coronavirus are still unclear, people in the Democratic Republic o ... more

More about TU Berlin
  • News

    Biosensors made of cellulose

    Electroencephalography (EEG), electrocardiography (ECG), electromyography (EMG) – all of these non-invasive medical diagnostic methods rely on an electrode to measure and record electrical signals or voltage fluctuations of muscle or nerve cells underneath the skin. Depending on the type of ... more

    Metabolism: Researchers first to shed light on structure of huge enzyme complex

    Scientists at Martin Luther University Halle-Wittenberg (MLU) and TU Berlin have published their findings in the journal "Cell Reports". They investigated a multi-enzyme complex that plays an essential role in metabolism and have discovered that it functions differently than previously thou ... more

    Machine learning improves cancer diagnosis

    Researchers from Charité – Universitätsmedizin Berlin and the German Cancer Consortium (DKTK) have successfully solved a longstanding problem in the diagnosis of head and neck cancers. Working alongside colleagues from Technische Universität (TU) Berlin, the researchers used artificial inte ... more

More about University of Oslo