31-Mar-2010 - GBM Gesellschaft für Biochemie und Molekularbiologie e.V.

Analytica Research Prize for Dr. Matthias Selbach of MDC

New Method for Measuring the Production of Thousands of Proteins

Dr. Matthias Selbach, biologist at the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany, has been honored with the Analytica Research Prize 2010 in an award ceremony at the Analytica 2010 trade fair in Munich. Dr. Selbach received the prize, which is endowed with 25 000 euros, for his work on “the impact of microRNAs on protein production in cancer cells”. The prize is awarded by the Society for Biochemistry and Molecular Biology (GBM) and funded by Roche.

Proteins play a key role in practically every cell activity: Whether they transport oxygen, make muscles move or digest food – proteins are the chief actors in almost all biological processes. The “blueprint” for proteins is encoded in the genes. But although all cells of the body have the same genes, they produce quite different proteins. How then is the production of these different proteins regulated? Hitherto, scientists have devoted much effort to investigate each protein individually.

In their laboratory in Berlin, Dr. Selbach and his research team have now developed a new approach enabling them to measure the production of thousands of proteins simultaneously. The method involves labeling the amino acids, the building blocks of proteins, with stable isotopes. The cells then incorporate the isotope-labeled amino acids into the proteins. As a following step, the scientists quantify the protein synthesis using a mass spectrometer.

Only a few years ago, researchers discovered that microRNAs play an important role in gene regulation. microRNAs are tiny pieces of ribonucleic acid, a chemical relative of DNA. microRNAs also determine which proteins are produced by which cells.

If the regulation goes awry, this can lead to many diseases. Scientists across the globe are therefore seeking to develop methods to detect which microRNAs are active in the body’s cells and which proteins are regulated by them.

But exactly which proteins does a specific microRNA regulate? To solve this question, the research teams of Dr. Selbach and Professor Nikolaus Rajewsky at the Max Delbrück Center have joined forces.

Using the novel analytical approach they developed, the MDC researchers for the first time were able to quantify the influence of microRNAs on protein production. They discovered that a single microRNA can regulate synthesis of hundreds of proteins. In this way microRNAs can program the behavior of human cells.

Since in cancer cells different microRNAs are active than in healthy cells, microRNAs are considered to be promising candidates for diagnostics and therapy. Therefore, the researchers’ findings are anticipated to have a great impact in the future.

GBM Gesellschaft für Biochemie und Molekularbiologie e.V.

Request information now

Recommend news PDF version / Print

Share on

Facts, background information, dossiers
  • genes
  • ?-amino acids
  • transport
  • protein synthesis
  • molecular biology
  • medicine
  • GBM
  • food
  • diseases
  • dagnostics
  • biochemistry
  • acids
More about GBM
More about MDC
  • News

    Getting to the heart of an enzyme

    A team led by Oliver Daumke at the MDC has determined the three-dimensional structure of the NatC acetyltransferase in an article published in Nature Communications. This enzyme modifies cell proteins to enable them to perform their functions correctly. In cancer cells, however, NatC is oft ... more

    Towards a cell-based interceptive medicine in Europe

    Hundreds of researchers, clinicians, industry leaders and policy makers from all around Europe are united by a vision of how to revolutionize healthcare. In a perspective in Nature and the LifeTime Strategic Research Agenda they now present a roadmap of how to leverage the latest scientific ... more

    Diagnostics, meet CRISPR

    A new diagnostic test to quickly and easily monitor kidney transplant patients for infection and rejection relies on a simple urine sample and a powerful partner: the gene-editing technology CRISPR. Michael Kaminski, who developed it, leads a new Emmy Noether Group at the MDC & Charité. The ... more