22-Jan-2018 - University of Edinburgh

DNA study casts light on century-old mystery of how cells divide

Scientists have solved a longstanding puzzle of how cells are able to tightly package DNA to enable healthy cell division.

Their findings shed light on how single cells can compact DNA 10,000-fold to partition it between two identical cells - a process that is essential for growth, repair and maintenance in living beings.

Until now, the details were not clearly understood, but biochemical and imaging technologies combined with sophisticated mathematical analysis have revealed these for the first time.

They show the processes that enable copies of DNA in an existing cell to take on the necessary structure to divide correctly in two new cells.

The study clarifies one key aspect of how cells are able to constantly divide and renew, which has challenged scientists since the late 19th century.

Its findings will enable much more detailed research into the cell division process which, when it goes faulty, can lead to cancer, congenital disease and other conditions.

Researchers found that when cells divide, strands of genetic material are folded to form a series of compacted loops. These loops project out from a helix-shaped axis, like steps on a spiral staircase.

A key set of proteins known as condensin II controls the formation of these large loops of DNA and anchors them to the central spiral axis.

A related protein group, condensin I, acts to pinch smaller loops within these larger coils, enabling the genetic material to be compacted efficiently in preparation for cell division.

The combination of a helical axis, projecting loops of DNA and dense packing compacts the genome into orderly structures that can be accurately split when cells divide.

The study pinpoints the role of condensin I and condensin II, so-called molecular machines, which were previously known to have a key association with cell division.

The study was carried out by the University of Edinburgh, the University of Massachusetts Medical School, Howard Hughes Medical Institute and the Massachusetts Institute of Technology. It was supported by Wellcome.

Professor William Earnshaw, of the University of Edinburgh's Wellcome Trust Centre for Cell Biology, said: "This discovery reveals a fundamental but little-understood aspect of how cells divide - a process that efficiently packages enormous lengths of DNA into an impossibly small cell nucleus.

"Our results are an example of how, in future, intractable scientific problems may be solved by harnessing expertise across different fields - in our case combining biological and mathematical techniques."

Dr Tom Collins, from Wellcome's Genetics and Molecular Sciences team, said: "Scientists have been grappling with the question of how cells compact their chromosomes during mitosis for close to 150 years so it is brilliant to see decades of work come to fruition.

"It's the beginning of a long journey towards practical applications and the next step is to take this knowledge of how the process works in healthy cells, and identify what can go wrong to cause cancer or birth defects."

Facts, background information, dossiers
  • cells
  • DNA
  • biology
  • cell division
  • cell biology
  • Wellcome Trust
  • condensins
More about University of Edinburgh
More about University of Massachusetts Medical School
  • News

    Tumor-targeting MRI contrast based on human protein

    A team led by Gang Han, PhD, has designed a human protein-based, tumor-targeting Magnetic Resonance Imaging (MRI) contrast that can be easily cleared by the body. The discovery holds promise for clinical application, including early stage tumor detection because of the enhanced MRI contrast ... more

    First look at how our cells can 'swallow up and quarantine' Zika

    Eight weeks after receiving their first samples of Zika virus, scientists at the University of Massachusetts Medical School (UMMS) have shown that a very small protein we all have in our bodies, interferon-induced protein 3 (IFITM3), can dramatically reduce the ability of Zika virus to infe ... more

    Scientists identify genes that control smooth muscle contraction

    Researchers at UMass Medical School have identified a new molecular pathway critical for maintaining the smooth muscle tone that allows the passage of materials through the digestive system. This finding, based on studying calcium ion-controlled pathways in mice, may lead to new treatments ... more

More about MIT
  • News

    New test may predict COVID-19 immunity

    Most people in the United States have some degree of immune protection against Covid-19, either from vaccination, infection, or a combination of the two. But, just how much protection does any individual person have? MIT researchers have now developed an easy-to-use test that may be able to ... more

    Breakthrough in sizing nanoparticles using fluid-filled tubes

    The functionality of nanoparticles in a host of applications, including drug delivery and nano-optics, is often dictated by their mass and size. Measuring these properties simultaneously for the same nanoparticle has also been challenging. Now scientists from the University of Melbourne and ... more

    New face mask prototype can detect Covid-19 infection

    Engineers at MIT and Harvard University have designed a novel face mask that can diagnose the wearer with Covid-19 within about 90 minutes. The masks are embedded with tiny, disposable sensors that can be fitted into other face masks and could also be adapted to detect other viruses. The se ... more

  • Videos

    Plant-to-human communication

    MIT engineers have transformed spinach plants into sensors that can detect explosives and wirelessly relay that information to a handheld device similar to a smartphone. Video: Melanie Gonick/MITInfrared/fluorescent images: Min Hao Wong more

More about Howard Hughes Medical Institute
  • News

    Expanding the optogenetics toolkit

    Controlling individual brain cells using light-sensitive proteins has proven to be a powerful tool for probing the brain's complexities. As this branch of neuroscience has expanded, so has the demand for a diverse palette of protein tools. A multidisciplinary team of 14 researchers from the ... more

    Imaging techniques set new standard for super-resolution in live cells

    Scientists can now watch dynamic biological processes with unprecedented clarity in living cells using new imaging techniques developed by researchers at the Howard Hughes Medical Institute's Janelia Research Campus. The new methods dramatically improve on the spatial resolution provided by ... more

    Researchers 'unzip' molecules to measure interactions keeping DNA packed in cells

    Anyone who has ever battled a stuck zipper knows it's a good idea to see what's stuck, where and how badly - and then to pull hard. A Cornell research team's experiments involve the "unzipping" of single DNA molecules. By mapping the hiccups, stoppages and forces along the way, they have ga ... more