Enabling graphene-based technology via chemical functionalization
Now researchers at Northwestern University have identified conditions for chemically functionalizing graphene with the organic semiconductor perylene-3,4,9,10-tetracarboxylic-dianhydride (PTCDA).
PTCDA self-assembles into a molecularly pristine monolayer that is nearly defect-free as verified by ultra-high vacuum scanning tunneling microscopy. In addition, the PTCDA monolayers are stable at room temperature and atmospheric pressure, which suggest their use as a seeding layer for subsequent materials deposition.
Through chemical functionalization and materials integration, the outstanding electrical properties of graphene likely can be exploited in a diverse range of technologies including high-speed electronics, chemical and biological sensors and photovoltaics.
"Graphene has captured the imagination of researchers worldwide due to its superlative and exotic electronic properties," said Mark Hersam, who led the research team. He is professor of materials science and engineering in Northwestern's McCormick School of Engineering and Applied Science and professor of chemistry in the Weinberg College of Arts and Sciences.
"However, harnessing these properties requires the development of chemical functionalization strategies that will allow graphene to be seamlessly integrated with other materials that are commonly found in real-world technology," said Hersam. "The stability and uniformity of the chemistry demonstrated here suggest that it can be used as a platform for many device applications."
Original publication: Nature Chemistry, published online May 17
Most read news
Get the analytics and lab tech industry in your inbox
From now on, don't miss a thing: Our newsletter for analytics and lab technology brings you up to date every Tuesday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.