Messungen im Femtosekundenbereich - Der biologischen Energiespeicherung auf der Spur

19.05.2008

Zellen brauchen Energie, um ihre vielfältigen Funktionen zu erfüllen und um zu überleben. Universeller Energiespeicher ist das Adenosintriphosphat, kurz ATP. Im Bakterium Halobacterium salinarum ist das Protein Bacteriorhodopsin an der ATP-Spaltung beteiligt. Einem Forscherteam um Professor Eberhard Riedle von der Fakultät für Physik der Ludwig-Maximilians-Universität (LMU) München ist es nun gelungen, die ersten Reaktionsschritte nach der dazu notwendigen Photoanregung des Bacteriorhodopsin darzustellen: und zwar mit extrem kurzer Zeitauflösung von 170 Femtosekunden. Als Messsignal diente Terahertz-Strahlung.

"Diese Technik eröffnet völlig neue Perspektiven", sagt Riedle. "Das gilt natürlich für den Transport von Ladungsträgern in biologischen Molekülen, wie etwa beim zellulären Stoffwechsel. Es könnten so aber auch brisante Fragen aus der biophysikalischen Chemie, der Ultrakurzzeitspektroskopie bis hin zur Entwicklung und Charakterisierung von künstlich geschaffenen Materialien für Solarzellen beantwortet werden."

Dem Team um Riedle ist nun gelungen, die ersten Schritte des Protonentransfers im Bacteriorhodopsin mit extrem kurzer Zeitauflösung von nur 170 Femtosekunden direkt darzustellen. "Bei unseren Experimenten diente die Emission von Terahertz-Strahlung als Messsignal", berichtet der Physiker. "Unsere Ergebnisse zeigen, dass diese Technik eine völlig neuartige Perspekte auf den Prozesse des Ladungsträgertransports in einem biologischen Molekül liefert."

"In einer herkömmlichen Antenne bilden negativ geladene Teilchen im Material der Antenne, das sind die Elektronen, die Ladungsträger", sagt Jürgen Hauer, einer der Experimentatoren. "Im Falle des Bacteriorhodopsins bewegen sich nach der Anregung durch Licht aber Elektronen und Protonen, also beide elementaren Ladungsträger. Dabei geben sie Strahlung im Terahertz-Bereich ab." Damit sich die Emission der einzelnen Moleküle zur makroskopischen Beobachtung addieren kann, mussten die Forscher eine Probe mit orientiertem und regelmäßig angeordnetem Bacteriorhodopsin verwenden, die von den ungarischen Kooperationspartnern hergestellt wurde. Die Bewegung der Elektronen im Protein wird durch die großen Unterschiede der Ladungsverteilung vor und nach der Anregung durch die Lichtenergie verursacht.

Der Teil des Signals, der aus der Bewegung der Protonen entsteht, bezieht sich direkt auf die biologische Rolle von Bacteriorhodopsin. Denn die Absorption eines Photons löst eine molekulare Strukturänderung eines zentralen Bestandteils des Proteins aus. Dabei wird ein Proton an eine neue Bindungsstelle gekoppelt, wodurch der biologisch so wichtige Protonenkonzentrationsunterschied entsteht. "Wir haben in dieser Untersuchung die Terahertz-Emission aus biologischen Proben erstmals erfasst", so Riedle. "Dabei wurde auch ihr Vorzug gegenüber konventionellen spektroskopischen Techniken der Absorptionsmessung deutlich: Durch die Erfassung der Terahertz-Emission wird der biologische Prozess, also die Verlagerung des Protons, direkt beobachtet. Die Technik an sich kann jetzt aber auch für ganz andere Fragestellungen, etwa in der biophysikalischen Chemie oder bei der Entwicklung von Materialien für Solarzellen, genutzt werden."

Originalveröffentlichung: G.I. Groma, J. Hebling, I.Z. Kozma, G. Váró, J. Hauer, J. Kuhl, E. Riedle; "THz radiation from bacteriorhodopsin reveals correlated primary electron and proton transfer processes"; PNAS 2008.

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Erkennen, Verstehen, Heilen: Die Welt der Diagnostik