Forscher erhöhen Empfindlichkeit von NMR-Messungen

Kernspinresonanz mit niedrigen Magnetfeldern

22.07.2015 - Deutschland

Ein kleines Bauteil, das Messsignale verstärkt und störendes Rauschen unterdrückt – das präsentieren Jülicher und Aachener Forscher in der aktuellen Ausgabe von "Nature Physics". Entwickelt haben sie es für Kernspinresonanz-Messungen in der Batterieforschung. Die Technik wird typischerweise etwa für bildgebende Verfahren in der Medizin (MRT) oder die Analyse von Molekülstrukturen in der Biologie und Chemie (NMR) eingesetzt. Der neue Empfänger ermöglicht eine hohe Empfindlichkeit bei niedrigen Frequenzen auch ohne extrem starke und teure Magnete, die normalerweise für präzise Messungen benötigt werden.

Seit einigen Jahren arbeiten Forscher an der kleinen Schwester der etablierten Hochfeld-NMR, der Niederfeld-NMR. Während bei der Hochfeld-NMR (Nuclear Magnetic Resonance) immer stärkere Magnete immer mehr Informationen liefern sollen, geht die Niederfeld-NMR den entgegengesetzten Weg: Schwächere Magnete sollen vergleichbare Ergebnisse liefern wie die großen Elektro- oder supraleitenden Magnete. Das ist nicht nur deutlich preiswerter, die Geräte wären auch deutlich kompakter und entsprechend gut zu transportieren. So ergeben sich neue Anwendungsmöglichkeiten, an die bislang nicht zu denken war.

Die Geräte könnten beispielsweise mobil in der Medizin, zur Überwachung von Umwandlungsprozessen in der chemischen Industrie oder zur Analyse bei Erdölbohrungen zum Einsatz kommen. Von der neuen Methode könnte insbesondere auch die Batterieforschung profitieren: "Wir wollen damit Lithium-Ionen Batterien untersuchen. Es gibt bisher kaum Möglichkeiten, um im laufenden Betrieb an gebrauchsfertigen Batterien die ablaufenden elektrochemischen Prozesse zerstörungsfrei zu verfolgen. Mit dieser Methode könnte das gelingen", berichtet Martin Süfke, Doktorand am Jülicher Institut für Energie- und Klimaforschung (IEK-9).

Das Jülich-Aachener Wissenschaftler-Team hatte bereits in der Vergangenheit verwandte Techniken entwickelt, die auch ohne starke Magnetfelder hochauflösende NMR-Spektroskopie ermöglichen. "Wir konnten sogar schon mit höchster Genauigkeit im Erdmagnetfeldmessen. Aber die Analyse der Spektren war vergleichsweise aufwändig", sagt Prof. Stephan Appelt, der am Jülicher Zentralinstitut für Engineering, Elektronik und Analytik (ZEA-2) und als Professor an der RWTH Aachen arbeitet. Gemeinsam mit seinem Aachener Kollegen Prof. Bernhard Blümich hat er die Verfahren auf den Weg gebracht.

"Dem Prototyp des Niederfeld-NMRs, den wir jetzt entwickelt haben, liegt dagegen ein neues, sehr einfaches Konzept zugrunde", erklärt Appelt. Noch existiert das Gerät nur als etwa handtaschengroßer Prototyp. "Weitere technologische Entwicklungen könnten es in Zukunft ermöglichen den Prototypen auf Handyformat zu schrumpfen", sagt Appelt.

Entscheidendes Bauteil ist der sogenannte externe Resonator, ein rauscharmer ferromagnetischer Kern umwickelt mit einer Spule, dazu ein Kondensator. "Das Funktionsprinzip gleicht dem eines unglaublich empfindlichen Lang- und Mittelwellenradios", erklärt Süfke. "Entscheidend ist, dass der Empfangskreis das Messsignal erheblich mehr verstärkt als das störende Rauschen, dadurch wird die gesamte Messung empfindlicher."

Die sehr hohe Empfindlichkeit bei niedrigen Frequenzen bringt weitere Vorteile mit sich. "In Zukunft könnte man eine Vielzahl von Elementen nachweisen, die für die chemische Katalyse und Elektrochemie wichtig sind. Dazu gehören etwa Rhodium, Wolfram, Silber und Lithium, deren Messung mit konventionellen Hochfeld-NMRs sehr lange dauert", ergänzt Appelt. Als Fernziel erhoffen sich die Forscher neue Erkenntnisse in der Quantenphysik und Grundlagenforschung.

In ersten Experimenten haben die Forscher bereits eine hundertfache Verstärkung des Messsignals gegenüber herkömmlichen Versuchsanordnungen erreicht. "Wir sind damit bei gleichen Ausgangsbedingungen schon so empfindlich wie ein Hochfeld-NMR bei etwa 10 Tesla", sagt Appelt. "Und wir haben berechnet, dass eine weitere Verbesserung um einen weiteren Faktor Hundert möglich sein müsste." Der Forscher hat mathematische Modelle entwickelt, die das Verhalten des neuen Empfängers beschreiben. Sie helfen den Forschern nun, ihr System gezielt weiterzuentwickeln.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen