Photostrom in höchster Auflösung

18.06.2012 - Deutschland

Die zunehmende Miniaturisierung in der Elektronik erfordert neue Materialien. Vielversprechende Kandidaten sind Bauteile aus Kohlenstoff-Nanoröhren, die nun erstmals mit der erforderlichen räumlichen Auflösung optoelektronisch charakterisiert wurden.

Die bisher gängige Silizium-basierte Technologie wird bei der fortschreitenden Miniaturisierung in der Elektronik bald an fundamentale physikalisch - technische Grenzen stoßen. Filigrane Hohlzylinder aus Kohlenstoff-Atomen - sogenannte Kohlenstoff-Nanoröhren - haben großes Potenzial, diese Limitierung zu überwinden. Einzelne Kohlenstoff-Nanoröhren könnten in einem Bauteil beispielsweise als Transistor, Lichtabsorber und Licht-Emitter funktionieren.

Die winzigen Kohlenstoffröhren sind nur etwa einen Nanometer dünn. Die Charakterisierung ihrer optischen und elektrischen Eigenschaften sollte daher idealerweise in derselben Größenskala stattfinden. Mithilfe einer sogenannten optischen Antenne - einer laserbeleuchteten scharfen Goldspitze - konnte LMU-ProfessorAchim Hartschuhmit seinem Team nun erstmals elektrische und optische Signale der Nanoröhren auf der Nanoskala gleichzeitig erfassen. Bisher angewandte konventionelle konfokale Techniken bieten nicht die erforderliche räumliche Auflösung.

Bauteile aus einzelnen Nanoröhren vermessen

Die optische Antenne dagegen verstärkt die Signale einzelner Nanostrukturen und erlaubt Einblicke in höchster Auflösung: "In unserer Arbeit zeigen wir erstmals Photostromdaten mit einer Auflösung von weniger als 30 Nanometer, die an einzelnen Kohlenstoff-Nanoröhren aufgenommen wurden", sagt Hartschuh. Die Methode der sogenannten Spitzen-verstärkten optischen Nahfeldmikroskopie wurde von Hartschuhs Team bereits in der Vergangenheit vielfältig eingesetzt und nun weiterentwickelt.

Die räumliche Auflösung des Photostromsignals entspricht dabei recht genau dem theoretisch Erwarteten. "Neben den hier gezeigten Kohlenstoffnanoröhren könnte unsere Methode beispielsweise auf anorganische Halbleiternanodrähte und möglicherweise auch auf Solarzellen sowie darin verwendete Materialien angewandt werden", verweist Hartschuh, der auch dem „Center for NanoScience“ (CeNS) der LMU sowie dem Exzellenzcluster „Nanosystems Initiative Munich“ (NIM) angehört, auf weitere Einsatzmöglichkeiten.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen