Graphen-Entdeckung könnte helfen, Wasserstoff kostengünstig und nachhaltig zu erzeugen
Mikroskopische Einblicke in elektrochemische Grenzflächen
Forscher der University of Warwick und der University of Manchester haben endlich das seit langem bestehende Rätsel gelöst, warum Graphen so viel durchlässiger für Protonen ist als in der Theorie angenommen.
Vor einem Jahrzehnt wiesen Wissenschaftler der University of Manchester nach, dass Graphen für Protonen, die Kerne von Wasserstoffatomen, durchlässig ist.
Dieses unerwartete Ergebnis löste in der Fachwelt eine Debatte aus, da die Theorie voraussagte, dass es Milliarden von Jahren dauern würde, bis ein Proton die dichte kristalline Struktur von Graphen durchdringen könnte. Dies hatte zu der Vermutung geführt, dass Protonen nicht durch das Kristallgitter selbst, sondern durch die Löcher in seiner Struktur dringen.
Nun berichtet eine Zusammenarbeit zwischen der University of Warwick unter der Leitung von Prof. Patrick Unwin und der University of Manchester unter der Leitung von Dr. Marcelo Lozada-Hidalgo und Prof. Andre Geim in der Zeitschrift Nature über Messungen des Protonentransports durch Graphen mit ultrahoher räumlicher Auflösung und beweist, dass perfekte Graphenkristalle für Protonen durchlässig sind. Unerwarteterweise werden Protonen in der Nähe von nanoskaligen Falten und Kräuseln im Kristall stark beschleunigt.
Die Entdeckung hat das Potenzial, die Wasserstoffwirtschaft zu beschleunigen. Die teuren Katalysatoren und Membranen, die derzeit zur Erzeugung und Nutzung von Wasserstoff verwendet werden, könnten durch nachhaltigere 2-D-Kristalle ersetzt werden, wodurch die Kohlenstoffemissionen reduziert und durch die Erzeugung von grünem Wasserstoff ein Beitrag zum "Net Zero" geleistet werden könnte.
Das Team setzte eine Technik ein, die als elektrochemische Rastermikroskopie (scanning electrochemical cell microscopy, SECCM) bekannt ist, um winzige Protonenströme zu messen, die von nanometergroßen Bereichen gesammelt wurden. Dadurch konnten die Forscher die räumliche Verteilung der Protonenströme durch Graphenmembranen sichtbar machen.
Wenn der Protonentransport, wie von einigen Wissenschaftlern vermutet, durch Löcher erfolgt, würden sich die Ströme auf einige wenige isolierte Stellen konzentrieren. Es wurden keine solchen isolierten Stellen gefunden, was das Vorhandensein von Löchern in den Graphenmembranen ausschließt.
Dr. Segun Wahab und Enrico Daviddi, die Hauptautoren der Studie, kommentierten: "Wir waren überrascht, dass wir absolut keine Defekte in den Graphenkristallen feststellen konnten. Unsere Ergebnisse sind der mikroskopische Beweis dafür, dass Graphen von Natur aus für Protonen durchlässig ist."
Unerwartet wurde festgestellt, dass die Protonenströme um nanometergroße Falten in den Kristallen beschleunigt werden. Die Wissenschaftler fanden heraus, dass dies darauf zurückzuführen ist, dass die Falten das Graphen-Gitter effektiv "dehnen" und somit einen größeren Raum für Protonen schaffen, um durch das unberührte Kristallgitter zu dringen. Diese Beobachtung bringt nun Experiment und Theorie in Einklang.
Dr. Lozada-Hidalgo sagte: "Wir dehnen effektiv ein atomares Gitter und beobachten einen höheren Strom durch die gedehnten interatomaren Räume in diesem Gitter - das ist wirklich verblüffend."
Prof. Unwin kommentierte: "Diese Ergebnisse zeigen, dass SECCM, das in unserem Labor entwickelt wurde, eine leistungsstarke Technik ist, um mikroskopische Einblicke in elektrochemische Grenzflächen zu erhalten, was spannende Möglichkeiten für das Design von Membranen und Separatoren der nächsten Generation eröffnet, die Protonen verwenden."
Die Autoren sind begeistert von dem Potenzial dieser Entdeckung, neue wasserstoffbasierte Technologien zu ermöglichen. Dr. Lozada-Hidalgo sagte: "Die Ausnutzung der katalytischen Aktivität von Wellen und Falten in 2D-Kristallen ist ein grundlegend neuer Weg zur Beschleunigung von Ionentransport und chemischen Reaktionen. Dies könnte zur Entwicklung von kostengünstigen Katalysatoren für wasserstoffbezogene Technologien führen".
Hinweis: Dieser Artikel wurde mit einem Computersystem ohne menschlichen Eingriff übersetzt. LUMITOS bietet diese automatischen Übersetzungen an, um eine größere Bandbreite an aktuellen Nachrichten zu präsentieren. Da dieser Artikel mit automatischer Übersetzung übersetzt wurde, ist es möglich, dass er Fehler im Vokabular, in der Syntax oder in der Grammatik enthält. Den ursprünglichen Artikel in Englisch finden Sie hier.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Analytik- und Labortechnik-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.
Meistgelesene News
Weitere News von unseren anderen Portalen
Zuletzt betrachtete Inhalte
Alexandra Gatzemeyer wird in den Vorstand der Sartorius AG berufen und übernimmt die Leitung der Sparte Lab Products & Services
LaVision BioTec erwirbt Unterlizenzen von Carl Zeiss
Forschen an der Grenze
Terahertz goes Nano: Hochauflösende Terahertz-Nahfeld-Mikroskopie
Kühe kochen nicht - Lebensmittelchemiker entwickeln neues Analyseverfahren zum Nachweis von Bio-Milch
Einfacher Nasenabstrich kann Frühwarnung vor neu auftretenden Viren liefern - Ein Test auf ein einzelnes Molekül des Immunsystems kann helfen, heimliche Viren aufzuspüren, die in Standardtests nicht erkannt werden
Junge Nanotechnologen wollen neuartige Chipstrukturen erforschen - Neue Helmholtz-Nachwuchsgruppen in Jülich
Neue Methode für schnelle 3D-Mikroskopie - Vorhandene Mikroskope aufrüsten
Verfolgung der Chiralität in Echtzeit - "Diese bahnbrechenden Experimente zeigen, dass der zeitaufgelöste Zirkulardichroismus in einzigartiger Weise geeignet ist, die molekularen Bewegungen zu erfassen, die viele (bio)chemische Prozesse antreiben"
Blaues Blut des Kaiserskorpions durchleuchtet - Mainzer Biologen gelingt erstmals die Kristallisation vom Hämocyanin des Kaiserskorpions