23.09.2021 - Albert-Ludwigs-Universität Freiburg

Antibiotikapegel erstmals über den Atem messbar

Forscher erproben Biosensor für personalisierte Dosierung von Medikamenten

Ein Team von Ingenieuren und Biotechnologen der Universität Freiburg weist zu erstem Mal in Säugetieren nach, dass sich in Atemproben die Konzentration von Antibiotika im Körper bestimmen lässt. Die Atemmessungen entsprachen dem Antibiotikagehalt im Blut. Der Biosensor des Teams – ein sogenannter Multiplex-Chip für die gleichzeitige Messung von mehreren Messproben und Teststoffen – soll die personalisierte Dosierung der Medikamente gegen Infektionskrankheiten vor Ort in Zukunft ermöglichen und helfen, die Entwicklung resistenter Bakterienstämme zu verringern.

Der Sensor der Forschungsgruppe um Dr. Can Dincer und H. Ceren Ates, FIT Freiburger Zentrum für interaktive Werkstoffe und bioinspirierte Technologien, und Prof. Dr. Wilfried Weber, Professor für Synthetische Biologie und Mitglied im Sprecherteam des Exzellenzclusters CIBSS – Centre for Integrative Biological Signalling Studies beruht auf synthetischen Proteinen, die auf Antibiotika reagieren und damit eine Stromänderung erzeugen. Die Ergebnisse der Forschenden erscheinen nun in der Fachzeitschrift Advanced Materials.

Bisher konnten Forschende nur Spuren von Antibiotika im Atem nachweisen

Die Forschenden testeten den Biosensor an Blut, Plasma, Urin, Speichel und im Atem von Schweinen, die Antibiotika erhielten. Sie konnten nachweisen, dass die Messungen mittels Biosensoren im Plasma der Schweine so zuverlässig sind, wie das Standardlaborverfahren in der Medizin. Atemmessungen waren zuvor nicht möglich: „Bisher konnten Forschende nur Spuren von Antibiotika im Atem nachweisen. Mit unseren synthetischen Proteinen auf einem Mikrofluidik-Chip, bestimmen wir kleinste Konzentrationen im Atemgaskondensat und diese korrelieren mit den Blutwerten“, erklärt Dincer.

Sensor soll helfen, Antibiotikapegel bei schweren Infektionen stabil zu halten

Bei schweren Infektionen müssen Ärzte den Antibiotikapegel im Blut innerhalb eines personalisierten therapeutischen Bereichs stabil halten. Ansonsten drohen etwa Blutvergiftung und Organversagen bis hin zum Tod der Patienten. Außerdem können sich die Bakterien bei niedriger Antibiotika-Gabe so verändern, dass die Medikamente nicht mehr wirken: Sie werden resistent. „Die schnelle Überwachung der Antibiotika-Werte wäre in der Klinik von großem Nutzen“, so Ates, „die Methode ließe sich möglicherweise in eine herkömmliche Gesichtsmaske einbauen.“ Dincer entwickelt in einem weiteren Projekt an der Universität Freiburg tragbare Papiersensoren für die kontinuierliche Messung von Biomarkern im Atem. Zur Validierung des Antibiotikasensors sind klinische Tests geplant, die das System an menschlichen Proben prüfen.

Bakterienproteine als Sensor

Der Mikrofluidik-Biosensor trägt auf einem Polymerfilm befestigte Proteine, die so genannte Beta-Laktam-Antibiotika wie etwa Penicillin erkennen. Das in der Probe untersuchte Antibiotikum und ein enzymgekoppeltes Beta-Lactam konkurrieren um die Bindung dieser bakteriellen Proteine. Diese Konkurrenz erzeugt eine Stromänderung wie in einer Batterie: Je mehr Antibiotikum in der Probe vorhanden ist, desto weniger Enzymprodukt entsteht, was zu einem geringeren messbaren Strom führt. Das Verfahren basiert auf einem natürlichen Rezeptorprotein, mit dem resistente Bakterien das für sie gefährliche Antibiotikum erkennen. „Wir schlagen die Bakterien sozusagen mit ihren eigenen Waffen“, beschreibt Weber das von seiner Gruppe entwickelte Verfahren.

Albert-Ludwigs-Universität Freiburg

News weiterempfehlen PDF Ansicht / Drucken

Teilen bei

Fakten, Hintergründe, Dossiers
  • Antibiotika
  • Antibiotika-Analytik
  • Atemgasanalytik
Mehr über Uni Freiburg
  • News

    Belastungen in Kunststoffen und Bauteilen sichtbar machen

    Einem Forschungsteam unter Leitung von Prof. Dr. Michael Sommer, Inhaber der Professur Polymerchemie der Technischen Universität Chemnitz und  PD Dr. Michael Walter, Projektleiter am Exzellenzcluster Living, Adaptive and Energy-autonomous Materials Systems (livMatS) der Albert-Ludwigs-Unive ... mehr

    KI-gestützter Roboter hilft beim Pipettieren

    Ob in der Medizin, Pharmazie, Biologie oder Chemie: Pipetten sind für Mitarbeitende in Laboren wichtige Instrumente, um Flüssigkeiten zu übertragen. Die genaue Ausführung des Pipettierens ist insbesondere dann von großer Bedeutung, sobald Wissenschaftler Experimente reproduzieren. Die Freib ... mehr

    Gemeinsame Schwachstellen von Coronaviren

    Auf der Suche nach neuen Medikamenten gegen COVID-19 deckt eine Gruppe von etwa 200 Wissenschaftlern molekulare Vorgänge auf, mit denen die Coronaviren MERS, SARS-CoV1 und SARS-CoV2 die Wirtszelle manipulieren. Die Forscher aus sechs Ländern fanden 73 menschliche Eiweiße, mit denen Bestandt ... mehr