Göttinger Forscher untersuchen chemische Zusammensetzung der Aschewolke

Erste Bilder der Partikel unter dem Elektronenmikroskop

30.04.2010 - Deutschland

Nach dem Ausbruch des isländischen Vulkans Eyjafjallajökull haben Wissenschaftler der Universität Göttingen erstmals mit einer Elektronen-Mikrosonde einzelne Staubteilchen aus der Aschewolke analysiert und deren chemische Zusammensetzung untersucht. Ihre Proben sammelten die Forscher am vergangenen Wochenende nach einem leichten Regen auf der Oberfläche frisch gewaschener Autos. Zwar hatten sich dort nur wenige Milligramm pro Quadratmeter abgelagert, doch Prof. Dr. Gerhard Wörner und Dr. Andreas Kronz von der Abteilung Geochemie am Geowissenschaftlichen Zentrum der Universität gelang es, die Aschepartikel unter dem Elektronenmikroskop sichtbar zu machen. Ihre Analysen sind wichtige Daten zur Bewertung der Aschebelastung der Atmosphäre insgesamt und der daraus resultierenden Gefährdung des Flugverkehrs. „In ihrer Konzentration war die Aschewolke nicht dichter als ein sommerlicher Sandsturm in der Sahara über Nordafrika, sie befand sich aber nur in einer bestimmten Höhe der Atmosphäre“, so Prof. Wörner. „Allerdings ist die Zusammensetzung ganz anders. Nun gilt es für die Ingenieure herauszufinden, wie und in welchen Konzentrationen die Vulkanasche die Triebwerke von Flugzeugen schädigen kann.“

Uni Göttingen

Wurmförmiges Aggregat aus Aschepartikeln zwischen normalen Staubkörnern.

Die untersuchten Aschepartikel bestehen zum großen Teil aus Silikat-Glas: Sie entstanden, als im Schlot des Vulkans heiße Lava auf kaltes Gletscherwasser traf und in kleine Einzelteile zerplatzte. Durch die Eruption wird die Lava zusätzlich fragmentiert, und durch die rasche Abkühlung erstarren die Teilchen schlagartig zu Glas. Neben den typischen Elementen Silizium, Aluminium, Magnesium, Eisen und Kalzium sowie ebenfalls für Island typischen Kristallen konnten die Wissenschaftler auf der Oberfläche der Partikel mit der Mikrosonde erhöhte Konzentrationen von Chlor und Schwefel messen. Dies deutet darauf hin, dass sich vulkanische Gase aus der Eruptionswolke auf den Aschepartikeln niedergeschlagen haben. Darüber hinaus entdeckten die Forscher wurmförmige Ascheteilchen, deren Herkunft bislang noch unklar ist. „Unter Umständen sind diese Asche-Aggregate eine Folge der Blitze, die durch die statische Aufladung in der Eruptionswolke entstehen. Um das herauszufinden, werden wir die Göttinger Aschepartikel mit den Ablagerungen direkt am Kraterrand vergleichen. Wir stehen bereits mit Wissenschaftlern in Island in Kontakt“, so Prof. Wörner.

Ein Messflug des Deutschen Zentrums für Luft- und Raumfahrt in Oberpfaffenhofen hatte am 19. April erste Erkenntnisse über die Konzentration und Größe der Ascheteilchen in vier bis 5,5 Kilometern Höhe gebracht. Bei einer Korngröße von weniger als 0,01 Millimeter enthält ein Kubikmeter Luft etwa 60 Mikrogramm Asche. „Als dieser extrem feine Staub aus der Aschewolke auf die Erde gesunken ist, wurden ein bis zwei Kilogramm feinste Asche auf einen Quadratkilometer verteilt. Das entspricht der Menge einer Kinderschaufel voll Feinstaub verteilt über die ganze Göttinger Innenstadt. Allein durch Autoverkehr werden größere Mengen an Feinstaub produziert“, erläutert Prof. Wörner.

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Zuletzt betrachtete Inhalte

Digitaler Wandel bei Waldner - Waldner Unternehmensgruppe geht strategische Partnerschaften zur Stärkung der digitalen Transformation ein

Digitaler Wandel bei Waldner - Waldner Unternehmensgruppe geht strategische Partnerschaften zur Stärkung der digitalen Transformation ein

Biotage erwirbt Horizon Technology - Übernahme stärkt die Position in den Bereichen Umwelt und Lebensmittelsicherheit

Elektronen sind verwirrt - Forscher haben möglicherweise das schnellste Schmelzen aller Zeiten beobachtet

Der versteckte Übeltäter, der Lithium-Metall-Batterien von innen tötet - Erstmalige Schnappschüsse enthüllen ein Nebenprodukt, das leistungsstarke, experimentelle Zellen lähmt

Der versteckte Übeltäter, der Lithium-Metall-Batterien von innen tötet - Erstmalige Schnappschüsse enthüllen ein Nebenprodukt, das leistungsstarke, experimentelle Zellen lähmt

BORN2GROW unterstützt Biotech-Start-up Venneos bei weiterem Wachstum

Kooperation zwischen Cybio und BioTeSys zur biologischen Validierung von Inhaltsstoffen - Testsysteme auf Basis von Zellkulturen

Superresolution-Live-Cell-Imaging gewährt unerwartete Einblicke in den dynamischen Aufbau von Mitochondrien

Eppendorf richtet Vorstandsstruktur neu aus - Position des Vorstandsvorsitzenden wird neu besetzt

Eppendorf richtet Vorstandsstruktur neu aus - Position des Vorstandsvorsitzenden wird neu besetzt

Die Struktur des kleinsten Halbleiters wurde entschlüsselt - Der kleinste Halbleiter, der aus nur 27 Atomen besteht, der Cd14Se13-Cluster, hat eine interessante Kern-Käfig-Struktur

Die Struktur des kleinsten Halbleiters wurde entschlüsselt - Der kleinste Halbleiter, der aus nur 27 Atomen besteht, der Cd14Se13-Cluster, hat eine interessante Kern-Käfig-Struktur

Kontrollierte Korrosion - Europäisches Forscherteam beobachtet erstmals Korrosionsprozess auf atomarer Ebene

Neuer Sensor kann immer kleinere Nanoteilchen erkennen - Neuartiger optischer Resonator bietet erstmals die Möglichkeit, die Bewegung von Nanoteilchen im Raum zu verfolgen

Neuer Sensor kann immer kleinere Nanoteilchen erkennen - Neuartiger optischer Resonator bietet erstmals die Möglichkeit, die Bewegung von Nanoteilchen im Raum zu verfolgen

Smarte hauchdünne Nanoblätter fischen Proteine - Wie man schneller und einfacher zu hochaufgelösten dreidimensionalen elektronenmikroskopischen Bildern von Biomolekülen kommt

Smarte hauchdünne Nanoblätter fischen Proteine - Wie man schneller und einfacher zu hochaufgelösten dreidimensionalen elektronenmikroskopischen Bildern von Biomolekülen kommt