Bestimmung der Struktur eines Moleküls mit laser-induzierter Elektronenbeugung
Lichtmikroskope haben unser Verständnis des Mikrokosmos revolutioniert, aber ihre Auflösung ist auf etwa 100 Nanometer begrenzt. Um zu sehen, wie sich Moleküle verbinden, brechen oder ihre Struktur verändern, brauchen wir eine mindestens 1000-mal bessere Auflösung.
Schematische Darstellung der Molekülstruktur von ionisiertem Carbonylsulfid (OCS+) mit Darstellung der gebogenen und asymmetrischen Konfiguration und der Bindungslängen zwischen den Atomen.
©ICFO
Die laserinduzierte Elektronenbeugung (LIED) ist eine Technik, die es erlaubt, die einzelnen Atome innerhalb eines einzelnen Moleküls genau zu lokalisieren und zu sehen, wohin sich jedes Atom bewegt, wenn das Molekül eine Reaktion durchläuft. Diese Technik erwies sich als ein erstaunliches Werkzeug für die Abbildung von Molekülen wie Wasser, Carbonylsulfid oder Kohlenstoffdisulfid. Die Verwendung eines starken Laserfeldes zur Erzeugung der Elektronenbeugung stellte jedoch eine Herausforderung bei der Ermittlung der genauen Struktur dar, da die Strukturauflösung von der genauen Kenntnis des Laserfeldes selbst abhing.
In einer kürzlich in Nature Communications veröffentlichten Studie haben die ICFO-Forscher Aurelien Sanchez, Kasra Amini, Tobias Steinle und Xinyao Liu unter der Leitung von ICREA-Professor am ICFO Jens Biegert in Zusammenarbeit mit Forschern der Kansas State University, des Max-Planck-Instituts für Kernphysik, der Physikalisch-Technischen Bundesanstalt und der Friedrich-Schiller-Universität Jena über einen alternativen und neuartigen Ansatz berichtet, der genaue und präzise Informationen über die atomare Struktur ohne exakte Kenntnis des Laserfeldes liefert. Sie wendeten die Methode erfolgreich auf die Abbildung des gasförmigen Moleküls Carbonylsulfid (OCS) an, insbesondere auf die Bindungslängen zwischen den konstituierenden Atomen, und zeigten eine signifikant gebogene und asymmetrisch gestreckte Konfiguration der ionisierten OCS+-Struktur.
Bestimmung der atomaren Bindungen von Carbonylsulfid
In ihrem Experiment nahmen die Wissenschaftler ein Gasgemisch aus 1% OCS in Helium und expandierten es mit Überschall, um einen Molekularstrahl des Gases mit einer Temperatur unter 90K zu erzeugen. Dann nahmen sie einen 3,2?m-Laser und setzten das Molekül dem starken Laserfeld aus. Die Wechselwirkung zwischen dem Laser und dem Molekül erzeugte ein beschleunigtes Elektron, das aus dem Molekül freigesetzt, in das Laserfeld beschleunigt und durch das elektrische Feld des Lasers zum Zielion zurückgeführt wurde; die erneute Kollision des Elektrons mit der Ionenstruktur erzeugte einen molekularen Abdruck der Struktur, und durch Extraktion dieser Information aus dem Elektroneninterferenzmuster und der Streuwinkelanalyse waren die Wissenschaftler in der Lage, die richtige Struktur des Moleküls zu bestimmen.
Neuartigkeit des Ansatzes
Die Neuartigkeit dieses Ansatzes mit dem Namen ZCP-LIED liegt darin, dass die Wissenschaftler einen sehr cleveren Weg gefunden haben, die atomaren Informationen zu erhalten, indem sie die vollständigen 2D-Elektronenstreuungsinformationen verwenden, hauptsächlich die Energie- und Streuwinkelspektren des Elektrons im Laborrahmen anstelle des Laserrahmens, was die Statistik der Ergebnisse drastisch verbessert. Neben der Verwendung von 2D-Daten anstelle von 1D-Informationen identifizierten sie auch eine Besonderheit in den Spektren, die sie als Positionen des Nulldurchgangspunkts (ZCP) bezeichneten (wo das Interferenzsignal einen Nullwert zeigte). Indem sie die Analyse über diese kritischen Punkte durchführten, waren die Wissenschaftler in der Lage, aus einem viel kleineren Datensatz genauere Informationen über die Bindungslängen der Atome, aus denen das Molekül besteht, zu erhalten, was die Berechnungszeit ganz erheblich reduzierte.
Zur Validierung ihres Ansatzes verwendeten sie verschiedene Methoden, verglichen sie mit quantenchemischen theoretischen Simulationen und bewiesen, dass ihre ZCP-LIED-Technik die Abstände zwischen den Atomen mit einer viel höheren Präzision erhalten konnte, dass sie Bindungsabstände ähnlicher Länge messen konnte (etwas, das mit früheren Methoden ziemlich unmöglich war), dass sie die Umwandlung von Bezugsrahmen vermied und in der Lage war, die Molekülstruktur in Umgebungen zu bestimmen, in denen das Hintergrundrauschen beträchtlich sein konnte. Unter Berücksichtigung all dessen berichteten sie, dass sie die molekulare Information von 10-Atom-Molekülen erhalten haben, und insbesondere für das Carbonylsulfid, wo sie sahen, dass das Molekül OCS+ eine deutlich gebogene und asymmetrisch gestreckte Struktur hatte, anders als das, was frühere Studien für dieses Molekül bestimmt hatten.
Die Ergebnisse dieser Studie haben gezeigt, dass die ZCP-LIED-Technik ein sehr leistungsfähiges Werkzeug zur Bestimmung der Molekülstruktur von großen und komplexeren Molekülen sein könnte. Sie könnte auch auf die ultraschnelle Elektronenbeugung (UED) und sogar die ultraschnelle Röntgenbeugung (UXD) ausgeweitet werden, um die geometrische Struktur von Molekülen in einer transienten Phase zu verfolgen.
Hinweis: Dieser Artikel wurde mit einem Computersystem ohne menschlichen Eingriff übersetzt. LUMITOS bietet diese automatischen Übersetzungen an, um eine größere Bandbreite an aktuellen Nachrichten zu präsentieren. Da dieser Artikel mit automatischer Übersetzung übersetzt wurde, ist es möglich, dass er Fehler im Vokabular, in der Syntax oder in der Grammatik enthält. Den ursprünglichen Artikel in Englisch finden Sie hier.
Meistgelesene News
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Analytik- und Labortechnik-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.
Meistgelesene News
Weitere News von unseren anderen Portalen
Zuletzt betrachtete Inhalte
Aktuelles aus der Analytik
Schnell, sicher und strukturiert zum Befund - Agfa HealthCare schließt strategische Partnerschaft mit Start-up SMART Reporting
Eppendorf baut in Wismar neues Werk für Hightech-Kunststoffe zur Anwendung im Labor - Produktionsstart soll bis Ende des Jahres erfolgen
Elektronische digitale Messuhren überwachen und kalibrieren - Richtlinie VDI/VDE/DGQ 2618
Eingewickelte Silber-Häufchen - Kristallstruktur eines durch DNA stabilisierten Silber-Nanoclusters aufgeklärt
Eine optische Linse, die Gas spürt - Forschende der Friedrich-Schiller-Universität Jena stellen optische Linse aus Hybridglas her
Meilenstein für die medizinische Forschung: Neue Methode ermöglicht umfassende Identifizierung von Omega-Fettsäuren - Forscher der Universität Graz und der University of California, San Diego, präsentieren eine effektive Methode zur Bestimmung der Omega-Positionen von Lipiden in komplexen biologischen Proben, darunter menschliches Gewebe und Blut
RUB-Biophysiker erhält 1,2 Mio. Euro im Wettbewerb "Med. in NRW": Center for Vibrational Microscopy entsteht
Erstmals mikroskopisch messbar: Wie Biomoleküle auf Platzmangel reagieren - Sensor zeigt Enge in lebenden Zellen an
Geschäftsjahresabschluss der Firmengruppe WALDNER