28.09.2020 - Karlsruher Institut für Technologie (KIT)

Streckbank für Zellen

Raffinierte, wenige Mikrometer kleine Vorrichtung macht es möglich, die Reaktion einzelner Zellen auf mechanischen Stress zu untersuchen

Das Verhalten von Zellen wird durch ihre Umgebung gesteuert. Neben biologischen Faktoren und chemischen Substanzen geraten auch physikalische Kräfte wie Druck oder Zug in den Fokus. Eine Methode, mit der sich der Einfluss äußerer Kräfte auf einzelne Zellen analysieren lässt, haben Forscher des Karlsruher Instituts für Technologie (KIT) und der Universität Heidelberg entwickelt. Mit einem 3D-Druckverfahren stellen sie Mikro-Gerüste her, auf deren jeweils vier Pfeilern sich eine Zelle ansiedelt. Auf ein äußeres Signal hin schwillt ein Hydrogel im Inneren des Gerüstes an und drückt die Pfeiler auseinander: Die Zelle muss sich „strecken“.

Viele zelluläre biologische Prozesse, wie etwa die Wundheilung oder die Entwicklung von Gewebe, werden stark von den Eigenschaften ihrer Umgebung beeinflusst. Zellen reagieren beispielsweise auf biologische Faktoren oder chemische Stoffe. Doch zunehmend geraten auch einwirkende physikalische Kräfte in den Blickpunkt der Forschung: Wie genau stellen sich die Zellen auf sie ein?

Das Team des Exzellenzclusters 3DMM2O hat im deutsch-japanischen Universitätskonsortium HeKKSaGOn und in Kooperation mit australischen Wissenschaftlern einen besonders raffinierten Weg beschritten, um sich dieser Frage zu nähern. Für die Herstellung ihrer Zell-Streckbänke nutzten sie das „direkte Laserschreiben“, ein spezielles 3D-Druckverfahren: Dabei wird ein Laserstrahl computergesteuert in eine spezielle flüssige Druckertinte fokussiert. Deren Moleküle reagieren nur an den beleuchteten Stellen und bilden dort ein festes Material. Alle anderen Bereiche bleiben flüssig und können weggewaschen werden. „Dieses Verfahren ist bei uns im Exzellenzcluster etabliert, um dreidimensionale Strukturen aufzubauen – auf der Mikrometerskala und darunter“, erläutert Marc Hippler vom Institut für Angewandte Physik des KIT, Erstautor der Veröffentlichung.

Im aktuellen Fall verwendeten die Forscher drei verschiedene Druckertinten: Eine Tinte aus protein-abweisendem Material, mit der sie das eigentliche Mikrogerüst herstellten. Mit einer zweiten Tinte aus protein-anziehendem Material fertigten sie anschließend vier Balken, die jeweils mit einem der Gerüstpfeiler verbunden sind. Auf diesen vier Balken verankert sich die Zelle. Eine dritte Tinte ist der eigentliche Clou: Die Wissenschaftler „drucken“ mit ihr eine Masse im Inneren des Gerüstes. Geben sie dann eine spezielle Flüssigkeit zu, dehnt sich die Hydrogel-Masse aus. Sie entwickelt so eine Kraft, die ausreicht, um die Pfeiler mitsamt den Balken zu bewegen – und somit die Zelle auf den Balken zu strecken.

Zellen wirken Deformation aktiv entgegen

Die Wissenschaftler des Exzellenzclusters haben zwei ganz verschiedene Zellarten auf ihre Mikro-Streckbank gelegt: humane Knochentumor-Zellen und embryonale Mäusezellen. Sie stellten fest, dass die Zellen den äußeren Kräften mit Motorproteinen aktiv entgegenwirken und ihre Zugkräfte so stark erhöhen. Wird die externe Streckung aufgehoben, so entspannen sich die Zellen wieder und kehren zu ihrem Ausgangszustand zurück. „Dieses Verhalten zeigt eindrucksvoll die Anpassungsfähigkeit an eine dynamische Umgebung. Wenn sich die Zellen nicht mehr erholen würden, wären sie nicht mehr in der Lage, ihre ursprüngliche Funktion – beispielsweise den Wundverschluss – zu erfüllen“, so Professor Martin Bastmeyer vom Zoologischen Institut des KIT.

Wie das Team weiter herausfand, spielt bei der Reaktion der Zellen auf die mechanische Stimulation ein Protein namens NM2A (NonMuscle Myosin 2A) eine entscheidende Rolle: Genetisch veränderte Knochentumor-Zellen, die NM2A nicht bilden können, waren kaum noch in der Lage, der äußeren Deformation entgegenzuwirken.

Karlsruher Institut für Technologie (KIT)

News weiterempfehlen PDF Ansicht / Drucken

Teilen bei

Fakten, Hintergründe, Dossiers
  • Zellen
  • Zellanalyse
  • 3D-Druck
Mehr über KIT
  • News

    Ein Turbochip für die Medikamentenentwicklung

    Trotz steigenden Bedarfs sinkt die Zahl neu entwickelter Medikamente in den letzten Jahrzehnten stetig. Die Suche nach neuen Wirkstoffen, deren Herstellung, Charakterisierung und das Testen auf biologische Wirksamkeit ist sehr aufwendig und teuer. Unter anderem auch deswegen, weil alle drei ... mehr

    Wasseraufbereitung: Neues Verfahren eliminiert hormonelle Mikroschadstoffe

    Hormone und andere Mikroschadstoffe gefährden die Gesundheit, wenn ihre Rückstände über das Trinkwasser in den Körper gelangen. Breit einsetzbare Lösungen zu ihrer Beseitigung gibt es bislang aber nicht. Das Karlsruher Institut für Technologie (KIT) hat nun ein Verfahren entwickelt, mit dem ... mehr

    Neue Elektronische Nase erkennt unterschiedliche Gerüche

    Frisch gemahlener Kaffee, Popcorn, Bioabfall oder Rauch – im Laufe unseres Lebens lernen wir die verschiedensten Gerüche kennen und können sie dank unserer Nase unterscheiden, auch ohne die Quelle des Geruchs zu sehen. Wissenschaftler des Karlsruher Instituts für Technologie (KIT) haben in ... mehr

Mehr über Ruprecht-Karls-Universität Heidelberg
  • News

    Wie Zellen ihr Skelett bilden

    Zellen benötigen für viele wichtige Prozesse wie Zellteilung und zelluläre Transportvorgänge strukturgebende Filamente, sogenannte Mikrotubuli. Ein Forscher-Team unter Federführung von Wissenschaftlern der Universität Heidelberg hat nun herausgefunden, wie die spiralförmigen, modular aufgeb ... mehr

    Die Energielandschaft von Solarzellen kartographieren

    Mit einer neuen spektroskopischen Methode ist es möglich, die Energielandschaft im Inneren von Solarzellen aus organischen Materialien zu messen und zu visualisieren. Entwickelt wurde sie von einem Forschungsteam unter der Leitung von Prof. Dr. Yana Vaynzof, Physikerin an der Universität He ... mehr

    Netzwerke der Genaktivität steuern die Organentwicklung

    Erstmals haben Wissenschaftler vergleichend die genetischen Programme entschlüsselt, die die Entwicklung wichtiger Organe beim Menschen und bei anderen ausgewählten Säugetieren – Rhesusaffe, Maus, Ratte, Kaninchen und Opossum – vor und nach der Geburt steuern. Die Molekularbiologen der Univ ... mehr