Mit “MAUS” an die Spitze der Nano-Forschung

02.02.2018 - Deutschland

Ob in Kosmetika, Textilien, Elektronik oder Lebensmitteln: Nanopartikel befinden sich längst in vielen Alltagsprodukten, wo sie zum Beispiel Farbe, Wirksamkeit oder Haltbarkeit beeinflussen. An der Bundesanstalt für Materialforschung und -prüfung (BAM) wird zu den Auswirkungen von Nanopartikeln auf Gesundheit und Umwelt geforscht. Neben anderen Verfahren kommt dabei auch die Röntgenkleinwinkelstreuung (Small-Angle X-Ray Scattering, kurz: SAXS) zum Einsatz, mit der Menge und Größe von Nanopartikeln in Proben gemessen werden können. Hier hat die BAM nun einen Meilenstein gesetzt und ein einzigartiges Labor-SAXS-Gerät bauen lassen.

BAM

Mann und MAUS: Dr. Brian Pauw vom Fachbereich Polymere in Life Science und Nanotechnologie forscht bereits länger mit SAXS und leitete die Konzeption sowie den Aufbau des Gerätes.

Der rund sechs Meter lange „Multi-scale Analyser for Ultrafine Structures“, kurz MAUS, kann Strukturen mit einer Bandbreite von 0,2 bis zu 2000 Nanometer in großen Probenmengen analysieren. Hinzu kommen neue, an der BAM erarbeitete Datenkorrektur- und Auswertungsmethoden. Mit bisherigen Standardgeräten können nur kleinere Proben bzw. ein kleinerer Nanometerbereich gemessen werden. MAUS soll künftig auch für Partnerinstitute und Universitäten zugänglich sein, um den fachlichen Austausch sowie die Weiterentwicklung und Standardisierung von SAXS zu beschleunigen.

Von SAXS zu MAUS: Nano-Silberpartikel gehen um die Welt

„Der Investition voraus gegangen war ein weltweiter Versuch, inwieweit SAXS-Messungen auf unterschiedlichen Geräten zum gleichen Ergebnis kommen und inwieweit SAXS in der Nanoanalytik generell als verlässliche Messmethode geeignet ist“, erklärt BAM-Mitarbeiter Dr. Brian Pauw, der bereits länger mit SAXS forscht und die Konzeption sowie den Aufbau des Gerätes leitete. Dazu schickte die BAM einheitliche Proben mit Silberpartikeln an 22 führende Labore. Die Ergebnisse stimmten mit einer Genauigkeit von 90 – 98% nahezu überein. „Diese Ergebnisse zeigen, dass SAXS - wenn es richtig gemacht wird - eine zuverlässige Methode zur Messung von Nanopartikeln und Nanostrukturen ist.“

Prof. Dr. Heinz Sturm leitet die Abteilung Materialschutz und Oberflächentechnik sowie den Arbeitskreis Nanotechnologie und ergänzt: „Um auch künftigen Ansprüchen gerecht zu werden, muss das Verfahren fortwährend präzisiert und gemäß aktuellen Anforderungen erweitert werden. Die Investition in das neue Labor-SAXS-Gerät MAUS sehen wir daher als Schlüssel auch im Hinblick auf internationale Kooperationen.“

BAM forscht an einer sicheren und verträglichen Nutzung von Nanomaterialien

Ziel der Forschung ist eine sichere und verträgliche Nutzung innovativer Nanomaterialien über den gesamten Lebenszyklus; von der Materialentwicklung über Produktion, Verarbeitung und Nutzung bis zum Recycling oder zur Entsorgung. BAM-Präsident Prof. Dr. Ulrich Panne betont: „Ob es darum geht, den Flammschutz von Kunststoffen zu verbessern oder Karosserien von Autos und Flugzeugen sicherer zu machen: Wir leisten mit unserer Grundlagenforschung und auch durch die Entwicklung und Definition europäischer und internationaler Normen einen wichtigen Beitrag zur Sicherheit der Nanotechnologie.“

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Partikelanalyse

Die Methoden der Partikelanalyse erlaubt es uns, winzige Partikel in verschiedenen Materialien zu untersuchen und ihre Eigenschaften zu enthüllen. Ob in der Umweltüberwachung, der Nanotechnologie oder der pharmazeutischen Industrie – die Partikelanalyse eröffnet uns einen Blick in eine verborgene Welt, in der wir die Zusammensetzung, Größe und Form von Partikeln entschlüsseln können. Erleben Sie die faszinierende Welt der Partikelanalyse!

15+ Produkte
2 White Paper
10+ Broschüren
Themenwelt anzeigen
Themenwelt Partikelanalyse

Themenwelt Partikelanalyse

Die Methoden der Partikelanalyse erlaubt es uns, winzige Partikel in verschiedenen Materialien zu untersuchen und ihre Eigenschaften zu enthüllen. Ob in der Umweltüberwachung, der Nanotechnologie oder der pharmazeutischen Industrie – die Partikelanalyse eröffnet uns einen Blick in eine verborgene Welt, in der wir die Zusammensetzung, Größe und Form von Partikeln entschlüsseln können. Erleben Sie die faszinierende Welt der Partikelanalyse!

15+ Produkte
2 White Paper
10+ Broschüren

Zuletzt betrachtete Inhalte

Wie lange strahlt das Selen im Atommüll? - PTB-Wissenschaftler bestimmen Halbwertszeit von Selen-79 genauer

Eppendorf baut in Wismar neues Werk für Hightech-Kunststoffe zur Anwendung im Labor - Produktionsstart soll bis Ende des Jahres erfolgen

Eppendorf baut in Wismar neues Werk für Hightech-Kunststoffe zur Anwendung im Labor - Produktionsstart soll bis Ende des Jahres erfolgen

Elektronische digitale Messuhren überwachen und kalibrieren - Richtlinie VDI/VDE/DGQ 2618

Eingewickelte Silber-Häufchen - Kristallstruktur eines durch DNA stabilisierten Silber-Nanoclusters aufgeklärt

Eingewickelte Silber-Häufchen - Kristallstruktur eines durch DNA stabilisierten Silber-Nanoclusters aufgeklärt

Eine optische Linse, die Gas spürt - Forschende der Friedrich-Schiller-Universität Jena stellen optische Linse aus Hybridglas her

Eine optische Linse, die Gas spürt - Forschende der Friedrich-Schiller-Universität Jena stellen optische Linse aus Hybridglas her

Meilenstein für die medizinische Forschung: Neue Methode ermöglicht umfassende Identifizierung von Omega-Fettsäuren - Forscher der Universität Graz und der University of California, San Diego, präsentieren eine effektive Methode zur Bestimmung der Omega-Positionen von Lipiden in komplexen biologischen Proben, darunter menschliches Gewebe und Blut

Meilenstein für die medizinische Forschung: Neue Methode ermöglicht umfassende Identifizierung von Omega-Fettsäuren - Forscher der Universität Graz und der University of California, San Diego, präsentieren eine effektive Methode zur Bestimmung der Omega-Positionen von Lipiden in komplexen biologischen Proben, darunter menschliches Gewebe und Blut

RUB-Biophysiker erhält 1,2 Mio. Euro im Wettbewerb "Med. in NRW": Center for Vibrational Microscopy entsteht

Erstmals mikroskopisch messbar: Wie Biomoleküle auf Platzmangel reagieren - Sensor zeigt Enge in lebenden Zellen an

Erstmals mikroskopisch messbar: Wie Biomoleküle auf Platzmangel reagieren - Sensor zeigt Enge in lebenden Zellen an

Geschäftsjahresabschluss der Firmengruppe WALDNER

Sartorius eröffnet Kompetenzzentrum für Bioanalytik in Ann Arbor - Herstellung von Geräten, Verbrauchsmaterialien und Reagenzien für die Zell- und Proteinanalyse

Sartorius eröffnet Kompetenzzentrum für Bioanalytik in Ann Arbor - Herstellung von Geräten, Verbrauchsmaterialien und Reagenzien für die Zell- und Proteinanalyse

Photonics4Life präsentiert das Mini-Labor für unterwegs

Struktur von ATPase, der kleinsten Turbine der Welt, gelöst - Position der Permeabilitäts-Übergangspore gefunden

Struktur von ATPase, der kleinsten Turbine der Welt, gelöst - Position der Permeabilitäts-Übergangspore gefunden