Improved technique determines structure in membrane proteins

19-Aug-2008 - USA

Understanding the form and function of certain proteins in the human body is becoming faster and easier, thanks to the work of researchers at the University of Illinois. By combining custom-built spectrometers, novel probe designs and faster pulse sequences, a team led by Illinois chemistry professor Chad Rienstra has developed unique capabilities for probing protein chemistry and structure through the use of solid-state nuclear magnetic resonance spectroscopy.

The researchers' recent results represent significant progress toward atomic-scale resolution of protein structure by solid-state NMR spectroscopy. The technique can be applied to a large range of membrane proteins and fibrils, which, because they are not water-soluble, are often not amenable to more conventional solution NMR spectroscopy or X-ray crystallography.

"In our experiments, we explore couplings between atoms in proteins," Rienstra said. "Our goal is to translate genomic information into high-resolution structural information, and thereby be able to better understand the function of the proteins."

Solid-state NMR spectroscopy relaxes the need for solubility of the sample. In solution NMR spectroscopy, molecules are allowed to tumble randomly in the magnetic field. In solid-state NMR spectroscopy, molecules are immobilized within a small cylinder called a rotor. The rotor is then spun at high speed in the magnetic field.

"With increased speed and sensitivity, we can obtain very high resolution spectra," Rienstra said. "And, because we can resolve thousands of signals at a time – one for each atom in the sample – we can determine the structure of the entire protein."

To improve sensitivity and accelerate data collection, Rienstra's group is developing smaller rotors that can be spun at rates exceeding 25,000 rotations per second. The faster rotation rate and smaller sample size allows the researchers to obtain more data in less time, and solve structure with just a few milligrams of protein.

Other news from the department science

These products might interest you

INVENIO

INVENIO by Bruker

FT-IR spectrometer of the future: INVENIO

Freely upgradeable and configurable FT-IR spectrometer

FTIR spectrometers
ZEEnit

ZEEnit by Analytik Jena

Zeeman Technology for Maximum Sensitivity – Matching any Analytical Problem

Transverse-heated graphite furnace for optimum atomization conditions and high sample throughput

AAS spectrometers
SPECORD PLUS

SPECORD PLUS by Analytik Jena

SPECORD PLUS Series - Maximum precision in UV/Vis

The modern classic guarantees the highest quality

contrAA 800

contrAA 800 by Analytik Jena

contrAA 800 Series – Atomic Absorption. Redefined

The best of classical atomic absorption and ICP-OES spectrometry are combined in the contrAA 800

ICP-OES spectrometers
Microspectrometer

Microspectrometer by Hamamatsu Photonics

Ultra-compact microspectrometer for versatile applications

Precise Raman, UV/VIS and NIR measurements in portable devices

microspectrometers
novAA®  800

novAA® 800 by Analytik Jena

The Analyzer 4 You - novAA 800-Series

The reliable all-rounder, making routine analysis efficient and cost-effective

PlasmaQuant MS Elite

PlasmaQuant MS Elite by Analytik Jena

LC-ICP-MS Is the Key to the World of Elemental Species

Highest Sensitivity and Lowest Detection Limits with PlasmaQuant MS Series and PQ LC

Biacore catalogue

Biacore catalogue by Cytiva

Get started with Surface Plasmon Resonance interaction analysis - which system is right for you?

Discover simpler and faster Surface Plasmon Resonance (SPR) with Biacore systems

Quantaurus-QY

Quantaurus-QY by Hamamatsu Photonics

High-speed UV/NIR photoluminescence spectrometer

Precise quantum yield measurements in milliseconds without reference standards

fluorescence spectrometers
FastTrack™

FastTrack™ by Mettler-Toledo

FastTrack UV/VIS Spectroscopy - Speed Up Your Measurements

Fast, reliable & efficient measurements with traceable accuracy in a small footprint

UV/VIS spectrophotometers
Loading...

Most read news

More news from our other portals

Recognise, understand, heal: The World of Diagnostics

See the theme worlds for related content

Topic World Spectroscopy

Investigation with spectroscopy gives us unique insights into the composition and structure of materials. From UV-Vis spectroscopy to infrared and Raman spectroscopy to fluorescence and atomic absorption spectroscopy, spectroscopy offers us a wide range of analytical techniques to precisely characterize substances. Immerse yourself in the fascinating world of spectroscopy!

20+ products
5+ whitepaper
20+ brochures
View topic world
Topic World Spectroscopy

Topic World Spectroscopy

Investigation with spectroscopy gives us unique insights into the composition and structure of materials. From UV-Vis spectroscopy to infrared and Raman spectroscopy to fluorescence and atomic absorption spectroscopy, spectroscopy offers us a wide range of analytical techniques to precisely characterize substances. Immerse yourself in the fascinating world of spectroscopy!

20+ products
5+ whitepaper
20+ brochures