04-Jul-2016 - Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik (IGB)

Rapid test identifies disease pathogens

Researchers developing a test which rapidly and cost-effectively identifies bacteria, fungi or viruses

At present, bacteria, fungi or viruses can generally only be detected with certainty by way of elaborate laboratory tests or animal experiments. The food and pharmaceutical industries would like to have faster tests to check their products. Fraunhofer researchers are therefore developing a stick that works like a pregnancy test and quickly delivers a result. In the future, it is also to be used for detecting allergens and disease pathogens in the blood.

Researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart are developing a test which rapidly and cost-effectively identifies bacteria, fungi or viruses. It can be carried out directly in situ without laboratory equipment and specialist knowledge. “The ImmuStick can even detect pathogens outside the body – on medical devices or in hospital rooms for example. However, the technology would certainly also be of interest for testing human blood for germs or allergies“, says Dr. Anke Burger-Kentischer.

As easy as a pregnancy test

The method works as simply as a pregnancy test. The ImmuStick is a test strip onto which a few drops of fluid are applied. If the fluid contains pyrogens, fragments of pathogens, this is shown by a colored strip in a viewing window. First of all, human immune receptors sensitive to certain pyrogens are applied to the surface of the stick. These are laboratory-produced immune receptors which are synthesized on the basis of the biological model. During production, at the docking point of the immune receptors to which the pyrogens normally bind, a type of placeholder is mounted which is marked with a dye. When drops of a fluid containing pyrogens are then applied to the test strip, the pyrogens rush to the docking point on the immune receptor. The placeholders marked with the dye migrate with the fluid through the test strip until they are visible in the viewing window. The color signal thus indicates that pyrogens that have docked on the immune receptors are present.

The ImmuStick project was financed with money from the Discover program. In this way the Fraunhofer-Gesellschaft is supporting projects for the duration of one year in order to demonstrate the feasibility of a technology. The ImmuStick has passed this test. “We were able to show that it works very well for the bacterial pyrogen LPS. Together with industrial partners, we now want to develop it into a product“, says project manager Burger-Kentischer. “We are currently testing further immune receptors that are specific for other pyrogens.“

Detecting blood poisoning and allergies

Currently envisaged are applications in the food and pharmaceuticals sector or in medical technology, as a complete absence of germs or pyrogens is required there. In principle, the ImmuStick would also be of interest for blood analysis. Pyrogens in the blood often lead to blood poisoning, sepsis, from which many people still die today, especially weakened intensive care patients. “However, blood is a special challenge as it is complex and contains many constituent parts. But in the medium term we are aiming at blood analysis“, says Burger-Kentischer.

As pyrogens also include certain allergy trigger factors, an application here would also be conceivable. In the food and pharmaceutical industries, for example, it is important that products are free of allergens. With the ImmuStick these could be detected quickly, cost-effectively and simply. Costly and laborious laboratory tests would therefore no longer be needed or could be supplemented. At present the IGB researchers are seeking cooperation partners who want to further develop the ImmuStick to make it ready for the market.

Pyrogens become a problem when hygiene is of particular importance – in the food and pharmaceutical industries for example, or on intensive care wards in hospitals. Especially people with weakened immune systems can become severely ill. For this reason, tests are frequently carried out and the surfaces of machines or medical devices are tested for pyrogens using swabs. However, to date these tests have been costly and laborious as pyrogens can only be detected with laboratory equipment. A widely used standard test is the detection of LPS, a structure that is present in the membrane of certain bacteria. At present this test takes up around two hours. Other pyrogens can even only be detected in animal experiment.

Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik (IGB)

Request information now

Recommend news PDF version / Print

Share on

Facts, background information, dossiers
  • pyrogens
  • bacteria
  • viruses
  • allergens
  • sepsis
  • fungi
  • rapid tests
More about Fraunhofer-Institut IGB
  • News

    Retina-on-a-chip provides powerful tool for studying eye disease

    Impact statement: New technology that recreates some of the complexity of the human retina may help scientists study eye disease and screen for drug side effects that harm the eye. The development of a retina-on-a-chip, which combines living human cells with an artificial tissue-like system ... more

    New Process for Marker-free Cell Selection

    At this year’s analytica trade fair in Munich, three Fraunhofer Institutes will be presenting a project from pre-competitive research. Biologists, computer scientists and laser experts have developed a process to analyze and select cells and then examine their protein production. In pharmac ... more

    Artificial skin tests for stopping sun damage

    Sun rays damage unprotected skin. Substances in medications or lotions applied to the skin can be chemically modified by sun rays to have a toxic effect on the body. An accredited in-vitro test method at Fraunhofer IGB in Stuttgart measures the phototoxic potential of substances or cosmetic ... more

More about Fraunhofer-Gesellschaft
  • News

    Making the invisible visible

    Entangled photons can be used to improve imaging and measurement techniques. A team of researchers from the Fraunhofer Institute for Applied Optics and Precision Engineering IOF in Jena has developed a quantum imaging solution that can facilitate highly detailed insights into tissue samples ... more

    Use of low-energy electrons for innovative biotechnology processes

    The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been utilizing electron-beam technology for decades in the development of cleaning, sterilization, and surface-modification processes and systems. Fraunhofer researchers from the Medical and Biotec ... more

    Tracking down polluters

    Proving criminal machinations can be difficult – for instance when those involved covertly discharge hazardous wastewater into sewers. A new sensor system developed by Fraunhofer researchers and their partners could soon help safety agencies establish wrongdoing: placed in a sewage canal, i ... more