18-Mar-2013 - Stockholm University

X-ray laser reveals chemical reaction

What happens when a chemical bond is broken? That question was recently answered with the help of a so-called free electron x-ray laser, which makes it possible to follow in real time how bindings in a molecule are changed and broken. The study, published in Science, found, among other things, evidence of a much-discussed intermediate state before molecules bind to or leave a metal surface. The possibility of monitoring at the molecular level how the electron structure changes in a chemical reaction creates entirely new opportunities for investigating and understanding key chemical processes in detail.

“To identify and characterize short-lived intermediate states in chemical reactions on the surface of metals has long been a dream,” says Henrik Öström at the Department of Physics, Stockholm University, who is part of the international research team that carried out the study. “With the new free electron x-ray laser at SLAC, we have shown that dreams can become reality and managed to identify a short-lived intermediate state when the bindings of CO molecules to a metal surface are broken or created.

SLAC (Stanford Linear Accelerator Center) was long a flagship of particle physics, where electrons were accelerated to nearly the speed of light in a three-kilometer-long linear accelerator. Now the accelerator has been rebuilt to generate, instead, powerful ultra-short (10-100 femtosecond) pulses of x-ray beams with a wavelength that makes it possible to examine the surroundings of a molecule down to the level of an individual atom. The pulses are sufficiently short to provide a snapshot of the electron distribution around the atom. By varying the delay between the start of a reaction and when the distribution of electrons is monitored with the x-ray pulse, these scientists can create a suspended-time image of changes in the course of the reaction.

“A first challenge was whether the incredibly powerful pulse would destroy the sample,” explains Anders Nilsson, a professor of synchrotron-light physics at SLAC and an adjunct professor at Stockholm University. “However, it turned out to be entirely possible to adjust the experiment in a way that enabled us to make our measurements.”

In the experiment, CO molecules were dosed onto a metal surface of ruthenium, which is used in automobile catalytic converters, for instance. CO binds strongly to the surface but can be made to let go by heating up the surface, which was done with a pulse from an optical laser. By starting the reaction for all the molecules at the same time, the team got a sufficient number of molecules to simultaneously enter a state where they have almost let go of the surface but still have a weak binding to it. From this short-lived state, the molecules can then continue out into a gas phase or renew their bond when the surface cools down again.

“Scientists have long speculated whether such a state, a so-called ‘precursor,’ exists. The new experiment is the first to directly show its existence,” says Lars G. M. Pettersson at the Department of Physic, Stockholm University. These studies will not go on to more complex reactions of interest to the field of synthetic fuels, among other applications.

Facts, background information, dossiers
  • Stockholm University
  • SLAC
  • X-ray lasers
  • Stanford University
  • Universität Hamburg
  • Technical Universit…
  • Helmholtz-Gemeinschaft
  • Helmholtz-Zentrum B…
  • Fritz-Haber-Institut
More about Stanford University
  • News

    Tiny light detectors work like gecko ears

    Geckos and many other animals have heads that are too small to triangulate the location of noises the way we do, with widely spaced ears. Instead, they have a tiny tunnel through their heads that measures the way incoming sound waves bounce around to figure out which direction they came fro ... more

    Wearable device measures cortisol in sweat

    The hormone cortisol rises and falls naturally throughout the day and can spike in response to stress, but current methods for measuring cortisol levels require waiting several days for results from a lab. By the time a person learns the results of a cortisol test - which may inform treatme ... more

    Making intricate images with bacterial communities

    Working with light and genetically engineered bacteria, researchers from Stanford University are able to shape the growth of bacterial communities. From polka dots to stripes to circuits, they can render intricate designs overnight. The technique can achieve biofilms grown at a resolution o ... more

More about Stanford Linear Accelerator Center
More about Uni Hamburg
  • News

    Using corkscrew lasers to separate mirror molecules

    Many of the molecular building blocks of life have two versions that are mirror images of one another, known as enantiomers. Although seemingly identical, the two enantiomers can have completely different chemical behaviour – a fact that has major implications in our day-to-day lives. For e ... more

    Happy hour for time-resolved crystallography

    Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in ... more

    Scientists measure soot particles in flight

    For the first time, air-polluting soot particles have been imaged in flight down to nanometre resolution. Pioneering a new technique, the international team, including researchers from DESY, snapped the most detailed images yet of airborne aerosols. “For the first time we can actually see t ... more

More about Technical University of Denmark
  • News

    Chemist develops X-ray vision for quality assurance

    It is seldom sufficient to read the declaration of contents if you need to know precisely what substances a product contains. In fact, to do this you need to be a highly skilled chemist or to have genuine X-ray vision so that you can look directly into the molecular structure of the various ... more

More about Helmholtz-Zentrum Berlin für Materialien und Energie
More about Fritz-Haber-Institut