06-Dec-2021 - Ecole Polytechnique Fédérale de Lausanne (EPFL)

Molecular device turns infrared into visible light

Breakthrough ushers in a new class of compact sensors for thermal imaging and chemical or biological analysis

Light is an electromagnetic wave: it consists of oscillating electric and magnetic fields propagating through space. Every wave is characterized by its frequency, which refers to the number of oscillations per second, measured in Hertz (Hz). Our eyes can detect frequencies between 400 and 750 trillion Hz (or terahertz, THz), which define the visible spectrum. Light sensors in cell phone cameras can detect frequencies down to 300 THz, while detectors used for internet connections through optical fibers are sensitive to around 200 THz.

At lower frequencies, the energy transported by light isn’t enough to trigger photoreceptors in our eyes and in many other sensors, which is a problem given that there is rich information available at frequencies below 100 THz, the mid- and far-infrared spectrum. For example, a body with surface temperature of 20°C emits infrared light up to 10 THz, which can be “seen” with thermal imaging. Also, chemical and biological substances feature distinct absorption bands in the mid-infrared, meaning that we can identify them remotely and non-destructively by infrared spectroscopy, which has myriads of applications.

Turning infrared into visible light

Scientists at EPFL, Wuhan Institute of Technology, the Valencia Polytechnic University, and AMOLF in the Netherlands, have now developed a new way to detect infrared light by changing its frequency to that of visible light. The device can extend the “sight” of commonly available and highly sensitive detectors for visible light far into the infrared. The breakthrough is published in Science.

Frequency conversion is not an easy task. The frequency of light is a fundamental that cannot easily change by reflecting light on a surface or passing it through a material because of the law of energy conservation.

The researchers worked around this by adding energy to infrared light with a mediator:  tiny vibrating molecules. The infrared light is directed to the molecules where it is converted into vibrational energy. Simultaneously, a laser beam of higher frequency impinges on the same molecules to provide the extra energy and convert the vibration into visible light. To boost the conversion process, the molecules are sandwiched between metallic nanostructures that act as optical antennas by concentrating the infrared light and laser energy at the molecules.

A new light

“The new device has a number of appealing features,” says Professor Christophe Galland at EPFL’s School of Basic Sciences, who led the study. “First, the conversion process is coherent, meaning that all information present in the original infrared light is faithfully mapped onto the newly created visible light. It allows high-resolution infrared spectroscopy to be performed with standard detectors like those found in cell-phone cameras. Second, each device is about a few micrometers in length and width, which means it can be incorporated into large pixel arrays. Finally, the method is highly versatile and can be adapted to different frequencies by simply choosing molecules with different vibrational modes.”

“So far, however, the device’s light-conversion efficiency is still very low,” cautions Dr Wen Chen, first author of the work. “We are now focusing our efforts in further improving it” – a key step toward commercial applications.

Ecole Polytechnique Fédérale de Lausanne (EPFL)

Recommend news PDF version / Print

Share on

Facts, background information, dossiers
More about Ecole Polytechnique Fédérale de Lausanne
  • News

    Carbyne – an unusual form of carbon

    Which photophysical properties does carbyne have? This was the subject of research carried out by scientists at FAU, the University of Alberta, Canada, and the Ecole Polytechnique Fédérale de Lausanne in Switzerland, which has led to a greater understanding of the properties of this unusual ... more

    Visualizing chemical reactions

    Researchers at the joint EPFL-Empa lab in Sion have developed a reactor system and an analysis method that has allowed them to observe the real-time production of synthetic natural gas from CO2 and H2 for the first time. Infrared (IR) thermography is used to determine the temperature of hu ... more

    Predicting a protein's behavior from its appearance

    Proteins are the building blocks of life and play a key role in all biological processes. Understanding how they interact with their environment is therefore vital to developing effective therapeutics and the foundation for designing artificial cells. Researchers at the Laboratory of Protei ... more

  • Videos

    The Gates of Serotonin

    EPFL scientists have elucidated for the first time how a notoriously elusive serotonin receptor functions with atom-level detail. The receptor transmits electrical signals in neurons and is involved in various disorders, meaning that the discovery opens the way for new treatments. The recep ... more