High-resolution microscope built from LEGO and bits of phone
Research shows constructing microscope improves children’s understanding - enlightening, educational and fun
microscopy is an essential tool in many fields of science and medicine. However, many groups have limited access to this technology due to its cost and fragility. Now, researchers from the Universities of Göttingen and Münster have succeeded in building a high-resolution microscope using nothing more than children’s plastic building bricks and affordable parts from a mobile phone. They then went on to show that children aged 9-13 had significantly increased understanding of microscopy after constructing and working with the LEGO® microscope. Their results were published in The Biophysicist.
Timo Betz
The researchers designed a fully functional, high-resolution microscope with capabilities close to a modern research microscope. Apart from the optics, all parts were from the toy brick system. The team realized that the lenses in modern smartphone cameras, which cost around €4 each, are of such high quality that they can make it possible to resolve even individual cells. The scientists produced instructions for building the microscope as well as a step-by-step tutorial to guide people through the construction process whilst learning about the relevant optical characteristics of a microscope. The researchers measured children’s understanding through questionnaires given to a group of 9-13 year olds. The researchers found that children given the parts and plans to construct the microscope themselves significantly increased their knowledge of microscopy. For this particular study, the researchers, whose day-to-day research focusses on fundamental biophysical processes, benefitted from the input and enthusiasm of their 10-year-old co-author.
“An understanding of science is crucial for decision-making and brings many benefits in everyday life, such as problem-solving and creativity,” says Professor Timo Betz, University of Göttingen. “Yet we find that many people, even politicians, feel excluded or do not have the opportunities to engage in scientific or critical thinking. We wanted to find a way to nurture natural curiosity, help people grasp fundamental principles and see the potential of science.” The researchers stayed in contact with the children and monitored their progress: after they had constructed the main parts, they discovered that the lenses can act as magnifying glasses. After exploring this, and realizing that a good light source was important, they initially found it tricky to align two magnifying glasses. However, once they had achieved this, the lenses generated tremendous magnification. This enabled the children to literally “play” with the microscope: make their own adaptations; explore how the magnification works; and discover the exciting world of the micro-cosmos for themselves.
“We hope that this modular microscope will be used in classrooms and homes all over the world to excite and inspire children about science,” continues Betz. “We have shown that scientific research does not need to be separate from everyday life. It can be enlightening, educational and fun!”
Original publication
Other news from the department science
Get the analytics and lab tech industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
Most read news
More news from our other portals
Last viewed contents
How to count the messenger out - Mapping the structure of protonated water clusters
Fair Rules for Sharing Sequence Data: New roadmap in Nature Microbiology - Combining openness and fairness in the data-intensive life sciences
A new addition to the CRISPR toolbox: Teaching the gene scissors to detect RNA - Researchers present the PUMA technology for the precise detection of RNA with DNA-cutting Cas12 nucleases
New deep learning algorithm can pick up genetic mutations and DNA mismatch repair deficiency in colorectal cancers more efficiently - The findings open up the possibility to select patients likely to benefit from targeted therapies at lower costs and with quicker turnaround times as compared to current methods
Sartorius Grows by Double Digits - Targets for 2020 Updated
First-ever blueprint of a minimal cell is more complex than expected - EMBL and CRG scientists reveal what a self-sufficient cell can't do without
Scientists realize quantum simulation of the Unruh effect
Highest-resolution view of subcellular, single-molecule, spatial biology - Resolve Biosciences Secures $71 Million Series B Financing
New method developed for investigating the internal structure of atoms - Previously unknown properties of the element samarium revealed
Opening the Way to Mobile Olfaction with Nanomechanical Sensors