Auf dem Weg zu neuen Speichermedien?
Schaltbare Nanostreifen: Spinübergangsverbindung lässt sich in Form geordneter kristalliner Mikrostrukturen auftragen
Die Steigerung der Speicherkapazitäten eine zentrale Herausforderung für Wissenschaft und Technik in unserem Informationszeitalter. Ein deutsch-italienisches Forscherteam verfolgt dabei das Konzept der „nanostrukturierten Speicherdomänen“. Wie die Wissenschaftler um Massimiliano Cavallini vom National Research Council (CNR) und Mario Ruben vom Forschungszentrum Karlsruhe berichten, gelang es ihnen, verlässliche Nanomuster einer so genannten Spinübergangsverbindung auf Siliciumoxid-Chips herzustellen. Dies ist ein entscheidender Schritt auf dem Weg zu einer neuen Generation molekularer Speichermedien, bei denen binäre Daten durch das „Umschalten“ von Elektronenspins gespeichert werden.
Derzeitige Computerfestplatten speichern Daten, indem die Oberfläche einer rotierenden Scheibe magnetisiert wird. Jede „Speicherzelle“ hat eine „Adresse“, so dass direkt auf die gespeicherten Daten zugegriffen werden kann. Um die Speicherkapazität zu erhöhen, werden die einzelnen magnetisierbaren Bereiche immer kleiner gemacht. Allerdings ist das Limit bald erreicht. Durch thermische Anregung kippen gelegentlich einige der magnetischen Partikel in die andere Richtung. Bei sehr kleinen Domänen kann die ganze Zelle rasch ihre Magnetisierung verlieren.
Um noch größere Informationsdichten zu erzielen, könnte man auch auf andere schaltbare Stoffeigenschaften umsteigen, beispielsweise den Übergang zwischen zwei Spinzuständen. So können Eisen(II)-Verbindungen in einem hohen und einem niedrigen Spinzustand vorliegen. Das „Umschalten“ (Flip) kann durch Temperatur, Druck und elektromagnetische Strahlung erreicht werden.
Für einen Datenspeicher werden aber nicht nur zwei unterscheidbare Zustände für 0 und 1 gebraucht, sondern auch eine eindeutige „Adresse“ für jede Speicherzelle, die von den optischen Schreib- und Leseeinheiten des Computers identifiziert werden kann. Dafür ist eine Schnittstelle notwendig, die die nanoskopischen Spinzustandsübergänge der molekularen Schalteinheiten mit der mikroskaligen Geräteumgebung in Einklang bringt. Dies kann gelingen, wenn die Spinübergangsverbindung in eine hochgeordnete Mikro- und Nanostruktur gebracht werden kann.
Mit speziellen unkonventioneller mikro- und nanolithographischen Methoden gelang es dem Team, einen neutralen Eisen(II)-Komplex in Form feinster Linien auf eine Siliziumwafer zu „drucken“. In einem Selbstorganisationsprozess richten sich die Nanokristalle dabei in einer bevorzugten Orientierung entlang der Linie aus. Außerdem gelang es ihnen, das Muster einer bespielten CD in einen Film der Eisenverbindung zu übertragen. Das beweist zum ersten Mal, dass es möglich ist, mit einer Spinübergangsverbindung lesbare logische Muster zu erzeugen. Um die Streifenstrukturen technologisch nutzbar zu machen, muss der Umschaltvorgang an Raumtemperaturbedingungen angepasst werden; die Arbeiten dazu sind schon in fortgeschrittenem Stadium.
Originalveröffentlichung: Massimiliano Cavallini et al.; "Micro- and Nanopatterning of Spin-Transition Compounds into Logical Structures"; Angewandte Chemie 2008, 120, No. 45, 8724–8728
Organisationen
Weitere News aus dem Ressort Wissenschaft

Holen Sie sich die Analytik- und Labortechnik-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.