11.09.2020 - Max-Planck-Institut für Intelligente Systeme

Neuartiges Mikroskop erkennt die Händigkeit eines einzelnen Nanoteilchens

Mikroskop-Spektrometer registriert beide Polarisationen simultan und erlaubt erstmals, ein sich dynamisch bewegendes, einzelnes Nanoteilchen in Lösung zu beobachten

Wissenschaftler der Forschungsgruppe Mikro, Nano und Molekulare Systeme am Max-Planck-Institut für Intelligente Systeme haben ein neuartiges Spektroskopie-Mikroskop entwickelt, mit dem sie ein einzelnes Nanoteilchen in Echtzeit beobachten können. So konnten sie erstmals die Händigkeit eines einzelnen, sich frei in Lösung bewegenden Nanoteilchens bestimmen. Diese Forschungsarbeit ebnet den Weg für optische Messungen mit hohen Bestimmungsgenauigkeiten bis hin zu Untersuchungen einzelner Moleküle und Proben von extrem niedrigen Volumina.

Fast alle Biomoleküle, inklusive Zucker, DNA, Aminosäuren und Proteine, kommen – wie unsere Hände – sowohl in einer linkshändigen als auch in einer rechtshändigen Form vor. Jedoch nehmen in der Natur die meisten Biomoleküle nur jeweils eine der zwei möglichen Formen ein. Der Grund für diese “Händigkeit”, auch Chiralität genannt, ist eine der großen ungelösten Fragen in der Wissenschaft. Folglich sind alle lebenden Organismen, viele Objekte und die meisten Pharmazeutika chiral, also händig. Daher ist es wichtig, die Händigkeit von Proben bestimmen zu können. Das kann mit Hilfe von links- oder rechtsdrehendem polarisierten Licht geschehen. Ein rechtshändiges Objekt absorbiert und streut das rechtsdrehende Licht anders als ein linkshändiges Objekt. Da die ermittelten Unterschiede sehr gering sind, verwenden übliche Instrumente Milliarden von Teilchen (Partikel oder Moleküle) zur Bestimmung der Chiralität. Das bedeutet, es werden große Proben benötigt, die zum einen teuer sein können und zum anderen dazu führen, dass interessante Details der individuellen Teilchen aufgrund von Mittelungen über die Menge aller Teilchen verloren gehen.

Den Stuttgarter Wissenschaftlern ist es nun gelungen, die Händigkeit einer einzelnen Nanostruktur zu bestimmen. Sie untersuchen metallische Nanostrukturen, die als optische Antennen dienen und optische Signale deutlich verstärken können. Aus diesem Grund dienen Gold- und Silber-Nanostrukturen üblicherweise als Proben für optische Spektroskopie – und sind ebenso vielversprechend als Proben für die chirale Spektroskopie. Jedoch erfordert die Bestimmung der Händigkeit, den Unterschied zwischen links- und rechtsdrehender Polarisation zu messen. Bisher musste die jeweilige Nanostruktur an einer Oberfläche fixiert werden während zwei unabhängige Messungen für links- und rechtsdrehende Polarisation durchgeführt wurden. Das erzeugte eine beträchtliche Zahl von Artefakten (Falschmessungen) und konnte sogar dazu führen, dass nicht-händige Objekte chiral erschienen.

Das neuartige von den Stuttgarter Wissenschaftlern entwickelte Mikroskop-Spektrometer registriert beide Polarisationen simultan und erlaubt erstmals, ein sich dynamisch bewegendes, einzelnes Nanoteilchen in Lösung zu beobachten. Mit diesem Ansatz ist es nun möglich, erstmals das wahre chirale Spektrum eines einzelnen Nanopartikels aufzuzeichnen. So liefert das Mikroskop eine neue Meßgrösse, die zuvor unzugänglich war.

“Bei der klassischen Methode messen wir den Durchschnitt von Milliarden von Nanoteilchen. Als Folge von unvermeidbaren Unreinheiten während der Herstellung der Nanostrukturen, ist das aufgezeichnete Signal immer nur ein Mittelmaß von vielen leicht voneinander abweichenden Formen. Im Gegensatz dazu ist unser neuartiges Mikroskop-Spektrometer in der Lage, eine einzelne Nanostruktur zu untersuchen”, sagt Peer Fischer, der als Leiter der Forschungsgruppe für Mikro, Nano und Molekulare Strukturen die Forschungsarbeit betreut hat und Professor an der Universität Stuttgart ist.

Eine größere Herausforderung war, eine neuartige Versuchsanordnung zu entwickeln, die simultan – also mit nur einer Belichtung – die rechts- und linksdrehenden Spektren bestimmt. “Das Konzept ist ebenso einfach wie genial, weil es nur feststehende Polarisationsoptik zur räumlichen Trennung des links- und rechtsdrehenden Lichts verwendet, um es letztendlich auf verschiedenen Bereichen eines speziellen Kameradetektors abzubilden” erläutert Johannes Sachs. Er ist zusammen mit Jan-Philipp Günther Erstautor der in Nature Communications erschienenen Forschungsarbeit.

Die Wissenschaftler können das Mikroskop nutzen, um die optischen Spektren von Nanopartikeln in Echtzeit zu bestimmen und somit zeitaufgelöste Messungen durchzuführen. Dieses neuartige Instrument macht deutlich, wie empfindlich das chirale Spektrum eines einzelnen Nanoteilchens von seiner Orientierung abhängt. Desweiteren konnte das Forscherteam zeigen, dass sie die sogenannte Brown´sche Bewegung – die zufällige thermische Fluktuation, die jedes kleine Objekt erfährt – nutzen können, um die Nanoteilchen aus allen Winkeln zu beobachten. Dies liefert die gleiche Information wie das bei den üblicherweise an gemittelten Proben gemessene Spektrum – jedoch beobachtet an einem einzelnen Teilchen an Stelle von mehreren Milliarden Teilchen.

Die Forscher sind sich sicher, dass ihre Erkenntnisse und das neue Konzept eine vielversprechende Plattform bieten wird für künftige Anwendungen. “Die Beobachtung von einzelnen Teilchen erlaubt es, mit extrem kleinen Probenvolumina und hoher räumlicher Auflösung zu arbeiten, z.B. innerhalb von individuellen Zellen” sagt Johannes Sachs. Zudem ist das Spektrum eines einzelnen metallischen Nanoteilchens hochempfindlich gegenüber Veränderungen seiner direkten Umgebung, beispielsweise wenn ein anderes Teilchen in seine Nähe kommt oder wenn ein an ihm fixiertes Protein seine Faltung ändert. “Somit kann die Möglichkeit, das chirale Spektrum eines einzelnen Teilchens zeitaufgelöst untersuchen zu können, lokale Reaktionsprozesse im Detail deutlich machen – und ist damit interessant für die Erforschung von biochemischen, medizinischen oder biologischen Prozessen. Das würde in konventionellen Messungen, die die Reaktionen einer großen Zahl an Teilchen mitteln, verdeckt bleiben” betont Jan-Philipp Günther.

Max-Planck-Institut für Intelligente Systeme

News weiterempfehlen PDF Ansicht / Drucken

Teilen bei

Fakten, Hintergründe, Dossiers
  • Echtzeit-Beobachtungen
  • Biomoleküle
  • Chiralität
  • Mikroskop-Spektrometer
  • Nanopartikel
Mehr über MPI für Intelligente Systeme
  • News

    Hocheffizient und kostengünstig: Neuartige Polymer-Linsen für Röntgenmikroskope

    Wissenschaftler des Max-Planck-Instituts für Intelligente Systeme in Stuttgart haben ein neuartiges und kostengünstiges Verfahren zur Herstellung von Röntgenlinsen mit Nanometer kleinen Merkmalen und exzellenten Fokussiermöglichkeiten erfunden. Durch den Einsatz dieser fortschrittlichen 3D- ... mehr

    Nanomagnetismus im Röntgenlicht

    Das Rasterröntgenmikroskop MAXYMUS ist an der Berliner Synchrotronstrahlungsquelle BESSY II am Helmholtz-Zentrum Berlin beheimatet. Die wissenschaftliche Betreuung erfolgt durch Dr. Markus Weigand aus der Abteilung „Moderne Magnetische Systeme“ des Max-Planck-Institutes für Intelligente Sys ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Neue Methode: Y-Chromosomen von Neandertalern und Denisovanern entziffert

    Ein internationales Forschungsteam unter der Leitung von Martin Petr und Janet Kelso vom Max-Planck-Institut für evolutionäre Anthropologie in Leipzig hat die Y-Chromosomen-Sequenzen von drei Neandertalern und zwei Denisova-Menschen bestimmt. Diese Y-Chromosomen liefern neue Einblicke in di ... mehr

    Masse des Deuterons korrigiert

    Hochpräzise Messungen der Masse des Deuterons, des Kerns von schwerem Wasserstoff, bringen neue Erkenntnisse über die Zuverlässigkeit fundamentaler Größen der Atom- und Kernphysik. Das berichtet eine Kollaboration unter der Leitung des MPI für Kernphysik mit Partnern der Johannes Gutenberg- ... mehr

    Proteine ganz nah

    Die von Nobelpreisträger Stefan Hell und seinem Team entwickelte MINFLUX-Nanoskopie ermöglicht, fluoreszierende Moleküle mit Licht getrennt abzubilden, die nur ein paar Nanometer (millionstel Millimeter) voneinander entfernt sind. Diese Technik ist damit hundertmal schärfer als die herkömml ... mehr

Themenschwerpunkte