15.07.2020 - Cornell University

Listeria-Protein bietet einen CRISPR-'Kill Switch'

Das Protein AcrVIA1 stoppte den CRISPR-Editierprozess sofort

Ein einzelnes Protein, das von einem gemeinsamen Bakterienstamm aus dem Boden stammt, wird den Wissenschaftlern eine präzisere Möglichkeit bieten, RNA zu editieren.

Das Protein mit der Bezeichnung AcrVIA1 kann den Prozess der Bearbeitung von CRISPR-Cas13 aufhalten, so neue Forschungsergebnisse von Cornell, der Rockefeller University und dem Memorial Sloan Kettering Cancer Center, die in der Zeitschrift Science veröffentlicht wurden.

"Wir erweitern unseren wissenschaftlichen Werkzeugkasten, um ein CRISPR effektiv und ohne Nebenwirkungen einsetzen zu können", sagte Co-Autor Martin Wiedmann, Ph.D. '97, der Gellert Family Professor für Lebensmittelsicherheit und Direktor des Cornell's Food Safety Laboratory and Milk Quality Improvement Program. "Dank dieses Bakteriums bekommen wir die Chance, unsere Fähigkeit, Änderungen an der RNA vorzunehmen, aus- und einzuschalten".

CRISPR, oder die geclusterten, regelmässig interspaced short palindromic repeats, ist ein Labormechanismus, der wie eine mikroskopische Schere wirken und die in der DNA enthaltenen Gene präzise editieren kann. Unter den ein halbes Dutzend CRISPR-Typen, die heute verwendet werden, kann CRISPR-Cas13 RNA editieren, die bisher keine Bremse im Editierungsprozess hatte.

Da SARS-CoV-2, das Coronavirus, das die COVID-19-Krankheit verursacht, ein RNA-Virus ist, könnte dieses neue Editierzubehör für Coronavirus-Forscher nützlich sein, sagten die Wissenschaftler.

Hauptautor Alex Meeske, Postdoktorand im Labor von Seniorautor Luciano Marraffini, Professor an der Rockefeller-Universität, hatte vermutet, dass ein Protein (Bakteriophage), das in Listeria beheimatet ist, für die RNA-Bearbeitung nützlich sein könnte.

Zu Beginn dieser Studie wandte sich Meeske an Wiedmann, einen Experten für Lebensmittelsicherheit, um genetische Bakterienproben aus seiner Sammlung von Lebensmittelerregern zu erhalten. Der Doktorand im Wiedmann-Labor Jingqiu Liao schränkte die Aussichten von rund 1.500 Bakterienkandidaten auf 62 Stämme ein.

Das Wiedmann-Labor transferierte diese Proben nach Rockefeller, wo die Praktikantin Alice Cassel die 62 Stämme sequenzierte und 20 Kandidatenproteine isolierte.

Eine Sorte stach heraus: Listeria seeligeri, eine harmlose Bakterie, die überall im Boden zu finden ist. Im Gegensatz zu ihrem erbitterten Vetter - dem lebensmittelbedingten Erreger L. monocytogenes - verursacht sie keine Krankheiten beim Menschen.

Die Rockefeller-Wissenschaftler stellten fest, dass das Protein AcrVIA1 - abgeleitet von L. seeligeri - den CRISPR-Editierungsprozess sofort stoppte. "AcrVIA1 kann sehr nützlich bei der Kontrolle der Anwendung von Cas13 sein. Alles, was das Cas13 editiert, kann dieses Anti-CRISPR-Protein abschalten", sagte Meeske. "Es ist ein 'Kill-Schalter', den man während des CRISPR-Editierungsprozesses benutzen kann, und es ist ein zusätzliches Werkzeug geworden, das uns zur Verfügung steht.

Wiedmann erklärte, dass Wissenschaftler nun mit anspruchsvolleren Mitteln an RNA-Problemen arbeiten können. "Dieses Werkzeug gibt uns mehr Präzision", sagte er.

Hinweis: Dieser Artikel wurde mit einem Computersystem ohne menschlichen Eingriff übersetzt. LUMITOS bietet diese automatischen Übersetzungen an, um eine größere Bandbreite an aktuellen Nachrichten zu präsentieren. Da dieser Artikel mit automatischer Übersetzung übersetzt wurde, ist es möglich, dass er Fehler im Vokabular, in der Syntax oder in der Grammatik enthält. Den ursprünglichen Artikel in Englisch finden Sie hier.

Fakten, Hintergründe, Dossiers
  • Bakterien
Mehr über Cornell University