Physiker der Universität Konstanz, der Ludwig-Maximilians-Universität München (LMU München) und der Universität Regensburg haben experimentell nachgewiesen, dass ultrakurze Elektronenpulse durch die Interaktion mit Lichtwellen in nanophotonischen Materialien eine quantenmechanische Phasenve ... mehr
Genschere CRISPR-Cas9: Schnitt mit Nebenwirkung
Neue Methode weist unbeabsichtigte Veränderungen, die im Zielgen selbst auftreten, erstmals einfach nach – und zeigt, dass diese sehr häufig sind
Die Genschere CRISPR-Cas9 kann menschliche Gene präzise verändern, aber auch unerwünschte Veränderungen an ihnen auslösen. LMU-Forscher können solche Fehler erstmals einfach nachweisen und zeigen, dass sie in Stammzellen häufig vorkommen.
Die Genschere CRISPR-Cas9 hat die Molekularbiologie revolutioniert, da mit ihr Gene sehr gezielt verändert werden können. Sie wird mittlerweile in der Forschung breit eingesetzt und auch für die Therapie von Patienten gibt es erste experimentelle Anwendungen. Um verlässliche Forschungsergebnisse zu erhalten und Fehler zu vermeiden, ist es essentiell, dass die Veränderungen sehr exakt eingefügt werden. Allerdings funktionieren die aktuellen CRISPR-Methoden nicht ganz fehlerfrei und können ungewollte weitere Veränderungen im Genom verursachen. LMU-Wissenschaftler um den Neurobiologen Professor Dominik Paquet vom Institut für Schlaganfall- und Demenzforschung haben eine einfach anwendbare Methode entwickelt, mit der unbeabsichtigte Veränderungen, die im Zielgen selbst auftreten, nachgewiesen werden können – und zeigen, dass diese sehr häufig sind. Damit leisten die Forscher einen wichtigen Beitrag, die Anwendung von CRISPR in Forschung und Therapie sicherer zu machen.
Das CRISPR-Cas-System ermöglicht die präzise Veränderung von Genen, indem es den DNA-Doppelstrang an der Zielstelle durchschneidet. Anschließend fügen zelleigene Reparatursysteme den durchtrennten Strang wieder zusammen. Forscher können auf diese Weise Gene inaktivieren oder an der Schnittstelle neue DNA-Abschnitte einfügen. Ungewollte weitere Veränderungen der DNA können dabei sowohl an irgendeiner anderen Stelle der DNA entstehen – sogenannte Off-Target-Effekte – als auch im zu verändernden Gen selbst, was als On-Target Effekt bezeichnet wird. „Ein On-Target-Effekt kann dazu führen, dass CRISPR, statt eine spezifische Stelle des Gens zu verändern, seine Funktion reduziert oder ganz ausschaltet“, sagt Paquet. „Während Off-Target-Effekte schon recht gut verstanden sind und es gute Nachweismethoden gibt, kennt man On-Target-Effekte erst seit Kurzem – und es gab bisher noch keine in der Forschung akzeptierte und breit anwendbare Methoden, diese zu finden.“
Bis zu 40 Prozent aller Zellen betroffen
Deshalb entwickelten die Wissenschaftler eine einfache Methode, mit der sich On-Target-Effekte erstmals verlässlich nachweisen lassen. Die Methode basiert auf der bereits etablierten Charakterisierung des Genoms mithilfe der sogenannten Polymerase-Kettenreaktion (PCR) und wird von den Wissenschaftlern als quantitative Genotypisierungs-PCR (qgPCR) bezeichnet. Zusätzlich werden Veränderungen an Stellen im Genom untersucht, an denen sich von Mutter und Vater vererbte Gensequenzen unterscheiden.
Am Beispiel von menschlichen induzierten pluripotenten Stammzellen haben die Wissenschaftler dann mit den neu entwickelten Methoden untersucht, ob nach dem Editieren des Genoms mit CRISPR On-Target-Effekte auftreten und wie verbreitet diese sind. Diese Zellen entstehen durch künstliche Reprogrammierung von Körperzellen und haben für Forschung und Therapie große Bedeutung. „Unsere Methode zeigt, dass On-Target-Effekte in CRISPR-behandelten menschlichen Stammzellen sehr häufig sind – je nachdem, welcher Reparaturmechanismus verwendet wird, können bis zu 40 Prozent aller Zellen betroffen sein“, sagt Paquet. In einem Zellkulturmodell für die Alzheimer-Erkrankung konnten die Forscher zudem nachweisen, dass das Auftreten von Symptomen durch solche ungewollten On-Target-Effekte behindert wird – ein Beispiel dafür, dass sie starke Auswirkungen auf die Ergebnisse von Studien mit CRISPR-veränderten Zellen haben können. Die neue Methode sollte nach Ansicht der Forscher als zusätzliche Qualitätskontrolle eingesetzt werden, um unbeabsichtigt veränderte Zellen zu identifizieren und damit die Zuverlässigkeit der Genschere CRISPR-Cas9 zu erhöhen.
- CRISPR
- Genschere
- CRISPR/Cas9
-
News
Eine Art Fischer-Dübel der Biophysik
Die Interaktion zwischen den Molekülen Biotin und Streptavidin ist ein wichtiges Werkzeug in der Forschung. LMU-Physiker haben die mechanische Stabilität dieser Verbindung nun detailliert untersucht und zeigen: Es kommt auf die Geometrie an. Mechanische Kräfte beeinflussen viele biologische ... mehr
LMU-Wissenschaftler haben Immunzellen aus Gewebe von menschlichen Tonsillen gewonnen und damit ein Verfahren entwickelt, mit dem sich wichtige Schritte der Körperabwehr analysieren und neue entzündungshemmende Medikamente testen lassen. Was normalerweise als Klinikabfall gilt, ist für Dirk ... mehr
- 1analytica 2020 mit sehr guten Ergebnissen im digitalen Format
- 2Neue SARS-CoV-2-Variante hat sich im Sommer 2020 in Europa verbreitet
- 3Die künstliche Zelle auf einem Chip
- 4Gemeinsame Schwachstellen von Coronaviren
- 5Forscher enthüllt Sensor, der COVID-19-Infektion schnell erkennt
- 6Neue Technik durchbricht eine Technologie-Barriere, die die RNA-Bildgebung 50 Jahre lang einschränkte
- 7Auflösungsweltrekord in der Kryo-Elektronenmikroskopie
- 8Neuer Algorithmus schärft den Blick der leistungsstärksten Mikroskope der Welt
- 9Revolution in der Krebsdiagnostik: Neue Technik zeigt ganze Tumorstücke in 3D
- 10Erstes Infrarot basiertes Mikroskop mit Quantenlicht: Die Zukunft der Biomedizin?
- Fluoreszenzmikroskopie mit höchster Auflösung
- Forschungsteam stoppt zeitlichen Abstand von Elektronen innerhalb eines Atoms
- Effektivere Screening-Methode verbessert Identifikation von Wirkstoffen gegen Viren
- Nanomaterialien in 3D-Röntgenperspektive
- Neues hocheffizientes Analyseverfahren für SARS-CoV-2 Mutationen