Das Rezept für eine Fruchtfliege

Forscher verwenden Massenspektrometrie, um die absolute Kopienzahl von Kernproteinen und Histonmarkierungen zu bestimmen

21.10.2019

© Adapted by designua, thanksforbuying, Adobe Stock

Molekulare Markierungen und Proteine (rot) beeinflussen die Genaktivität. Mihilfe der Massenspektrometrie können diese genau analysiert werden. Die Mengenangabe, ähnlich wie bei einem Kuchenrezept, hilft zu verstehen wie viele verschiedene Proteine für die Entwicklung eines Organismus benötigt werden.

Mittlerweile kennt man viele der Proteine, die für den Aufbau eines multizellulären Organismus erforderlich sind. Jedoch ist weitgehend unklar, wie viele Kopien jeder Proteinart vorhanden sind und benötigt werden, damit sich ein vollständiger Organismus entwickeln kann. Forscher am Max-Planck-Institut (MPI) für Biochemie haben mit Hilfe der Massenspektrometrie die absolute Kopienzahl verschiedener Kernproteine und Histonmarkierungen in Fruchtfliegen bestimmt. Diese Informationen helfen unserem Verständnis, wie die verschiedenen Proteine zusammenwirken, um den Aufbau einer Fruchtfliege zu steuern.

Fruchtfliegen und Menschen haben vieles gemeinsam, etwa 60 Prozent der Fliegengene kommen beim Menschen in ähnlicher Form vor. Durch die Forschung am Fruchtfliegenmodell wurden viele Erkenntnisse über grundlegende Mechanismen gewonnen. Die Ergebnisse dieser Studien haben wichtige Hinweise darauf gegeben, wie diese Mechanismen auch in Säugetieren oder Menschen funktionieren. In der aktuellen Studie untersuchte Jürg Müller vom MPI für Biochemie zusammen mit den Forschergruppen von Axel Imhof an der Ludwig-Maximilians-Universität (LMU) in München und Michiel Vermeulen an der Radboud University in Nimwegen das Proteinset, welches die Entwicklung einer Fliege steuert. Sie bestimmten die absolute Kopienzahl von Proteinen und chemischen Markierungen auf Histonproteinen im Zellkern in Fruchtfliegenembryonen.

Im Zellkern ist die DNA um sogenannte Histonproteine gewickelt, auch bekannt als Chromatin. Die gesamte Information in der genomische DNA die bestimmt, wie sich eine befruchtete Eizelle zu einem Organismus entwickelt, ist somit in Chromatin verpackt. Jürg Müller, Leiter der Forschungsgruppe "Biologie des Chromatins", erklärt: "Die Entwicklung eines Embryos ist ein faszinierender Prozess. Im Gegensatz zum Menschen können wir mit Modellsystemen wie der Fruchtfliege diesen Prozess nicht nur beschreiben, sondern auch untersuchen, wie er bei genetisch veränderten Tieren abläuft. Die Organisation des Chromatins verändert sich dramatisch während der Entwicklung. Wir wollten deshalb verstehen, ob und wie sich die Menge verschiedener Chromatinproteine und der chemischen Markierungen auf Histonen in den kritischen Phasen der Entwicklung verändert." Die Forscher ermittelten die Kopienzahl von fast 4000 Proteinen und chemischen Markierungen an Histonproteinen in zwei verschiedenen Stadien der embryonalen Entwicklung.

Jacques Bonnet, der Erstautor der Studie, sagt: "Man kann das Wissen, dass wir über die Mengen der einzelnen Proteinarten gewonnen haben, mit dem Wissen vergleichen, welches zum Backen eines Kuchens benötigt wird. Zu wissen, dass man Eier, Zucker, Mehl, Butter, Rosinen und Backpulver hinzufügen muss, ergibt für sich allein noch kein Rezept - man muss die genaue Menge jeder Zutat kennen, um den Kuchen zu backen. Genau gleich ist es, wenn wir den Prozess der Embryonenentwicklung verstehen wollen – es ist wichtig zu wissen wie viele Kopien jedes Proteins in einer Embryonalzelle vorhanden sind".

"Interessanterweise haben wir festgestellt, dass – anders als vermutet – viele Proteine in weit geringerer Kopienzahl vorhanden sind, während andere Proteine bedeutend häufiger vorkommen. Diese Beobachtungen sind wichtig für unser Verständnis wie die genomische DNA im Chromatin verpackt ist und reguliert wird, und einige unserer derzeitigen Sichtweisen müssen revidiert werden." so Jürg Müller.

Fakten, Hintergründe, Dossiers
  • Zellkern
  • Chromatin
  • Embryonalentwicklung
Mehr über MPI für Biochemie
  • News

    10-fach schnellere Superauflösungsmikroskopie

    Fortschritte in der Fluoreszenzmikroskopie ermöglichen es, biologische Prozesse unterhalb der klassischen Beugungsgrenze des Lichtes sichtbar zu machen. Eine Variante dieser sogenannten Superauflösungstechniken ist DNA-PAINT, die von Ralf Jungmann, Forschungsgruppenleiter für "Molekulare Bi ... mehr

    Proteine durchleuchten, um erste Anzeichen von Krankheiten sichtbar zu machen

    Das Europäische Patentamt (EPA) gibt die Nominierung des deutschen Physikers, Biochemikers und Bioinformatikers Matthias Mann für den Europäischen Erfinderpreis 2019 als einer von drei Finalisten in der Kategorie „Forschung" bekannt. Damit wird seine Entwicklung von Techniken zur umfassende ... mehr

    Aus-Schalter für Nebenwirkungen

    Opioide sind starke Schmerzmittel, die eine Reihe schädlicher Nebenwirkungen haben und zu Abhängigkeit führen können. Forscher aus Deutschland, Österreich und den USA haben jetzt ein Verfahren entwickelt, das tiefere Einblicke in die Reaktion des Gehirns auf Opioide erlaubt. Die Forscher an ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Verzerrte Atome

    Mit zwei Experimenten am Freie-Elektronen-Laser FLASH in Hamburg gelang es einer Forschergruppe unter Führung von Physikern des Max-Planck-Instituts für Kernphysik (MPIK) in Heidelberg, starke nichtlineare Wechselwirkungen ultrakurzer extrem-ultravioletter (XUV) Laserpulse mit Atomen und Io ... mehr

    Diagnostik für alle

    Mikroarrays sind moderne molekularbiologische Untersuchungssysteme, die die schnelle und parallele Diagnose von unterschiedlichen Krankheiten ermöglichen. Sie sind daher für die Erforschung neuer Impfstoffe unverzichtbar. Wie bei einem Computerchip sind hier viele Informationen auf kleinste ... mehr

    10-fach schnellere Superauflösungsmikroskopie

    Fortschritte in der Fluoreszenzmikroskopie ermöglichen es, biologische Prozesse unterhalb der klassischen Beugungsgrenze des Lichtes sichtbar zu machen. Eine Variante dieser sogenannten Superauflösungstechniken ist DNA-PAINT, die von Ralf Jungmann, Forschungsgruppenleiter für "Molekulare Bi ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.