Improved spectrometer based on nonlinear optics
New tool allows for higher sensitivity at reduced complexity and cost
Scientists at Stanford University and Japan's National Institute of informatics have created a new highly sensitive infrared spectrometer. The device converts light from the infrared part of the spectrum to the visible part, where the availability of superior optical detectors results in strongly improved sensing capabilities. The research will appear in optics Express, the Optical Society's open access journal. The new spectrometer is 100 times more sensitive than current commercial optical spectrum analyzers used in industrial applications such as optical communication, semiconductor microelectronics and forensic analysis.
Current spectrometers being used on the market today cover a wide spectral range, allow for moderately fast wavelength sweeps, have a good spectral resolution and don't require cryogenic cooling. However, the sensitivity of these instruments is limited, making them unsuitable for capturing single-photon-level spectra at telecommunication wavelengths. Cryogenic cooling can increase the sensitivity of these devices, yet reduces the usefulness for industrial applications. One possible solution is to up-convert near-infrared to visible light in a nonlinear medium. The up-converted photons can then be detected using a single-photon detector for visible light. The authors use a single-photon counting module, which results in 100 times better sensitivity. They implemented the frequency conversion via sum-frequency generation in a periodically poled lithium niobate waveguide, which can be thought of as combining two low-energy photons to get one high-energy photon.
Key Findings:
- The up-conversion based spectrometer's sensitivity is 100 times higher compared to current commercial optical spectrum analyzers.
- Cryogenic cooling is not required for increased sensitivity, making the device practical for a variety of industrial applications.
- The cost and system complexity of the spectrometer is reduced because it only uses one single-photon detector instead of an array of detectors.
Original publication: "Waveguide-Based Single-Pixel Up-Conversion Infrared Spectrometer," Optics Express 2008, Vol. 16, Issue 24.
Most read news
Organizations
Other news from the department science
These products might interest you
Get the analytics and lab tech industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
Most read news
More news from our other portals
Last viewed contents
Making the Invisible Visible – Two-Step Mechanism Discovered that Enables Innate Immune System to Detect Viruses Like HIV Early - Understanding this mechanism could be helpful for the development of AIDS vaccines
Lab M completes move to new HQ