Solid-state Lithium-Sulfur batteries offer the potential for much higher energy densities and increased safety, compared to conventional lithium-ion batteries. However, the performance of solid-state batteries is currently lacking, with slow charging and discharging being one of the primary ... more
New monochromator optics for tender X-rays
Highly precise spectromicroscopic measurements of nanostructured systems
Until now, it has been extremely tedious to perform measurements with high sensitivity and high spatial resolution using X-ray light in the tender energy range of 1.5 - 5.0 keV. Yet this X-ray light is ideal for investigating energy materials such as batteries or catalysts, but also biological systems. A team from HZB has now solved this problem: The newly developed monochromator optics increase the photon flux in the tender energy range by a factor of 100 and thus enable highly precise measurements of nanostructured systems. The method was successfully tested for the first time on catalytically active nanoparticles and microchips.
A climate-neutral energy supply requires a wide variety of materials for energy conversion processes, for example catalytically active materials and new electrodes for batteries. Many of these materials have nanostructures that increase their functionality. When investigating these samples, spectroscopic measurements to detect the chemical properties are ideally combined with X-ray imaging with high spatial resolution at the nanoscale. However, since key elements in these materials, such as molybdenum, silicon or sulphur, react predominantly to X-rays in the so-called tender photon energy range, there has been a major problem until now.
This is because in this "tender" energy range between soft and hard X-rays, conventional X-ray optics from plane grating or crystal monochromators deliver only very low efficiencies. A team from HZB has now solved this problem: "We have developed novel monochromator optics. These optics are based on an adapted, multilayer-coated sawtooth grating with a plane mirror," says Frank Siewert from the HZB Optics and Beamlines Department. The new monochromator concept increases the photon flux in the tender X-ray range by a factor of 100 and thus enables highly sensitive spectromicroscopic measurements with high resolutions for the first time. "Within a short time we were able to collect data from NEXAFS spectromicroscopy on the nanoscale. We have demonstrated this on catalytically active nanoparticles and modern microchip structures," says Stephan Werner, first author of the publication. "The new development now enables experiments that would otherwise have required months of data collection," Werner emphasises.
"This monochromator will become the method of choice for imaging in this X-ray energy range, not only at synchrotrons worldwide, but also at free-electron lasers and laboratory sources," says Gerd Schneider, who heads the X-ray Microscopy Department at HZB. He expects enormous effects on many areas of materials research: Studies in the tender X-ray range could significantly advance the development of energy materials and thus contribute to climate-neutral solutions for electricity and energy supply.
- optics
- monochromators
- imaging
-
News
Electrocatalysis under the atomic force microscope
A further development in atomic force microscopy now makes it possible to simultaneously image the height profile of nanometre-fine structures as well as the electric current and the frictional force at solid-liquid interfaces. A team from the Helmholtz-Zentrum Berlin (HZB) and the Fritz Ha ... more
New software based on Artificial Intelligence helps to interpret complex data
Experimental data is often not only highly dimensional, but also noisy and full of artefacts. This makes it difficult to interpret the data. Now a team at HZB has designed software that uses self-learning neural networks to compress the data in a smart way and reconstruct a low-noise versio ... more
- 1X-ray imaging captures fleeting defects in sodium-ion batteries
- 2Verder Group acquires specialist for particle characterization
- 3Launching Revvity: A Scientific Solutions Company Powering Innovation from Discovery to Cure
- 4Electronic noses sniff out volatile organic compounds
- 5The World’s Smallest Impedance Spectroscopy System in the Form of a Pill Finds Weak Spots in Machines and People
- 6Verder Group acquires ERWEKA
- 7Ultra-long protein fibrils give clues on dementia risk
- 8Why are neuron axons long and spindly?
- 9Hidden RNA repair mechanism discovered in humans
- 10Scientists “revive” Stone Age molecules
- For shorter approval times: New process simulates decomposition of too long ...
- Presence of nicotine and antidepressants detected in Antarctic waters
- Electronic noses sniff out volatile organic compounds
- Researchers develop sensors that operate at high temperatures and in extreme ...
- Novel AI-based software enables quick and reliable imaging of proteins in cells