08-Feb-2017 - University of Toronto

A new way to discover structures of membrane proteins

University of Toronto scientists have discovered a better way to extract proteins from the membranes that encase them, making it easier to study how cells communicate with each other to create human health and disease.

Scientists are very interested in understanding how membrane proteins work and why they malfunction under certain circumstances. Looking at their 3D structures is a particularly useful way to do this. Currently, researchers use detergents to separate proteins from their fatty membrane casing for further in-detail studies. But detergent strips the fat molecules away from the proteins, which very often destabilizes the proteins and makes them useless for study. As a result, new 3D structures are rarely discovered and published.

Dr. Jana Broecker, a postdoctoral fellow in the lab of Professor Oliver P. Ernst, discovered that she could use a type of plastic, or polymer, originally developed by the auto industry, to better stabilize these crucial proteins and thereby make them available for 3D structure determination.

The polymers don't strip off fat molecules from the proteins, instead wrapping themselves around the protein, with the fat molecules still attached, says Broecker, of the Department of Biochemistry. Using the new substance, she was able to keep these necessary fat molecules attached while she studied the protein's 3D structure using X-ray crystallography.

"We believe this approach can be applied to many more membrane proteins, which would drastically speed up structure discovery of currently unknown membrane proteins," says Broecker. "With more and better structures at hand, it will be easier to develop new drugs for the treatment of human diseases in the near future."

Facts, background information, dossiers
  • cells
  • polymers
  • detergents
  • crystallography
  • biochemistry
  • stability
More about University of Toronto
  • News

    Nature-inspired coatings could power tiny chemistry labs for medical testing and more

    A newly developed coating that allows for certain liquids to move across surfaces without fluid loss could usher in new advances in a range of fields, including medical testing. This new coating — created in the DREAM (Durable Repellent Engineered Advanced Materials) Laboratory, led by Univ ... more

    New more powerful genome editing method

    Toronto scientists can now edit multiple sites in the genome at the same time to learn how different DNA stretches co-operate in health and disease. CRISPR-based DNA editing has revolutionized the study of the human genome by allowing precise deletion of any human gene to glean insights int ... more

    'Breathing' enzymes in fast motion

    Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have piece ... more