Assessing quality of flowing waters with DNA analyses

Organisms in streams and rivers shed light on quality of waters

10-Jul-2015 - Germany

The quality of waters can be assessed using of the organisms occurring therein. This approach often results in errors, because many species look alike. Therefore, new methods focus on DNA analyses instead. Biologists at the Ruhr-Universität Bochum (RUB) have optimised the process so that they are now able to identify many organisms at once in a quick and reliable manner using short DNA sequences. The results have been published in the "PLOS ONE" magazine.

© RUB, Foto: Vasco Elbrecht

DNA metabarcoding: for the purpose of the analysis, all water organisms are macerated with liquid nitrogen in order to access the DNA.

Expert knowledge for species identification threatens to disappear

Industry, agriculture and human settlement put a strain on bodies of water; some organisms cannot survive due to the changing conditions in streams and rivers. Accordingly, their existence sheds light on the quality of the habitat. However, the number of experts able to identify the small animals on the basis of their appearance is in decline; only a few junior researchers are active in this field. RUB researchers from the Department Animal Ecology, Evolution and Biodiversity help preserve expert knowledge.

Database with "DNA barcodes"

For this purpose, they are creating a database in collaboration with the "German Barcode of Life Project": in the first step, qualified experts identify the water organisms based on their appearance. Subsequently, a short characteristic segment of the animals' genome – i.e. the barcode – is decoded and fed into the database. Someone who wishes to find out which species are represented in a body of water, takes a water sample, sequences the DNA of the organisms contained therein and matches it against the database. Vasco Elbrecht and Dr Florian Leese have developed an innovative lab protocol which renders this so-called DNA barcoding much faster than hitherto. They are able to identify more than thousand animals within a week after taking the sample. Even now in the development stage, the method identifies more than 80 per cent of the species correctly. It is thus more reliable than species identification based on external characteristics, and the biologists from Bochum are convinced that they will optimise the quota in the near future.

Assessment systems have to be adjusted to the new method

In their study, the Bochum-based biologists have also demonstrated the limitations of DNA barcoding. Using this method, it cannot be determined how many individuals of a certain species can be found in a body of water. The established assessment criteria for water quality, on the other hand, do include such data. "This is a problem for available assessment systems," says Florian Leese. "However, running waters are very dynamic; the frequency of species varies strongly for natural reasons over time. Therefore, it makes sense to record the quality based on conclusive species lists, without focusing too much on frequency.”

Original publication

Other news from the department science

Most read news

More news from our other portals

Last viewed contents

KROHNE concludes framework contract with Uhde

KROHNE concludes framework contract with Uhde

Labcyte Awarded US Patent for Real-Time Power Optimization

NTU Singapore scientists create ultra high performance flexible ultraviolet sensors for use in wearables

NTU Singapore scientists create ultra high performance flexible ultraviolet sensors for use in wearables

Water: Finding the normal within the weird

Water: Finding the normal within the weird

A relative from the Tianyuan Cave - Ancient DNA has revealed that humans living some 40,000 years ago in the area near Beijing were likely related to many present-day Asians and Native Americans

A relative from the Tianyuan Cave - Ancient DNA has revealed that humans living some 40,000 years ago in the area near Beijing were likely related to many present-day Asians and Native Americans

Quick test to detect inflammation in diabetic patients developed

Scientists capture electron transfer image in electrocatalysis process - In-situ electrochemical imaging method with nanoscale spatial resolution combined atomic force microscopy and scanning electrochemical imaging

Scientists capture electron transfer image in electrocatalysis process - In-situ electrochemical imaging method with nanoscale spatial resolution combined atomic force microscopy and scanning electrochemical imaging

DKSH exclusively distributes Postnova Analytics’ Field-Flow Fractionation systems - DKSH and Postnova Analytics have signed an exclusive distribution agreement for Malaysia, Singapore, Thailand and Vietnam

Structure of ATPase, the world’s smallest turbine, solved - Location of the permeability transition pore found

Structure of ATPase, the world’s smallest turbine, solved - Location of the permeability transition pore found

A new quantum component made from graphene - For the first time, ETH Zurich researchers have been able to make a superconducting component from graphene that is quantum coherent and sensitive to magnetic fields

FlowSyn and FlowSyn Maxi | Flow reactors | Uniqsis

FlowSyn and FlowSyn Maxi | Flow reactors | Uniqsis

Using neutrons to peer inside a battery designed for hybrid locomotives - Study is a collaboration between General Electric and Technische Universitaet Muenchen