Neutrons for better vaccines against multidrug resistant germs
FRM II lets scientists look deep inside the structure of biomolecules
neutrons from the Research Neutron Source Heinz Maier-Leibnitz (FRM II) can be used to explore the structure of biomolecules. The most recent success: the precise analysis of a promising vaccine against multidrug resistant germs.
Dr. Aurel Radulescu at the Neutron Small Angle Facility KWS-2 at the Heinz Maier-Leibnitz Zentrum. Neutrons from the Research Neutron Source Heinz Maier-Leibnitz (FRM II) can be used to explore the structure of biomolecules. The most recent success: the precise analysis of a promising vaccine against multidrug resistant germs.
Bernhard Ludewig, FRM II / TUM
Bacteria which are resistant to all conventional antibiotics cause more than a million deaths each year. Consequently, researchers around the world are searching for new therapeutic approaches to combat these pathogens. Two years ago an international team in Grenoble identified an active ingredient suitable for the production of a vaccine against multidrug resistant bacteria Pseudomonas aeruginosa. The vaccine has in the meantime been successfully tested on mice.
"As with many new vaccines, in this case the active ingredient is embedded in liposomes. The exact characterization and understanding of these nanoscopic biomolecules is a key factor in the development and optimization of future vaccines," says Dr. Marco Maccarini, biophysicist at the French National Centre for Scientific Research (CNRS). Together with experts at the TIMC laboratory of the Université Grenoble Alpes (UGA) and at the FRM II he has successfully analyzed the structure of the candidate vaccine against Pseudomonas aeruginosa.
The vaccine consists of biomolecules with sizes in the order of 100 nanometers. These molecules consist mostly of lipids, substances similar to fats, which form small bubbles or liposomes because of their biochemical properties. These bubbles can in turn protect and transport the actual active ingredients. In the case of the vaccine against Pseudomonas aeruoginosa, this active ingredient is the protein OprF. "In general, the active ingredient can dock to the liposome at various positions – for example internally or externally," Maccarini explains. "But it is best recognized by the immune system when it is integrated in the double lipid layer. Thus the structure of the biomolecule is decisive in the efficacy of a vaccine."
Wanted: Non-destructive radiation
Such structural details are not visible to the naked eye. Optical microscopes do not have a high enough resolution for the investigation of liposomes. Although x-ray radiation has shorter wavelengths, it is unsuitable for structural analysis, since the radiation can damage the biomolecules under certain circumstances. "But neutron beams are ideal: They only interact with atomic nuclei and thus cause no damage or structural changes. This way the samples can be investigated in their original condition," Maccarini says.
The researcher found everything he needed to analyze the new candidate vaccine at the FRM II in Garching near Munich: a high neutron flux, a well-equipped laboratory and Dr. Aurel Radulescu, an expert in the measurement of small-angle scattering, a technology which can be used to investigate the nanometer-sized molecules in detail.
Computer model represents structure of the vaccines
"In our case the challenge was using the diffractometer, which measures the scattering of the neutrons by the atomic nuclei, to distinguish between the proteins and the lipids in the sample," recalls Radulescu, who supervises the small-angle scattering diffractometer KWS-2 for the Forschungszentrum Jülich (FZJ) in Garching. He adds that it took a trick to finally make this distinction work: "We conducted the measurements with different combinations of solvents – normal water and heavy water containing deuterium, mixed in various concentrations." Since neutrons "see" normal hydrogen and deuterium differently, the result was images of the sample with different contrasts that contained distinct information.
For the analysis the research team developed a computer model which represents the structure of the candidate vaccine. "This lets us not only render the two-layer structure of the lipids, but also lets us determine the average position and amount of the OprF active ingredient which is embedded between the two lipid layers." The new model can also be used to investigate the structure of new, liposome-based vaccines and to optimize their further development.
Original publication
Most read news
Original publication
Francesco Spinozzi, Jean-Pierre Alcaraz, Maria Grazia Ortore, Landry Gayet, Aurel Radulescu, Donald K. Martin, and Marco Maccarini: Small-Angle Neutron Scattering Reveals the Nanostructure of Liposomes with Embedded OprF Porins of Pseudomonas aeruginosa, Langmuir 2022, 38, 15026−15037
Topics
Organizations
Other news from the department science
Get the analytics and lab tech industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
Most read news
More news from our other portals
Last viewed contents
Inflammatory biomarkers improve the clinical prediction of mortality in COPD
Germ-killing sanitizers could have effect on alcohol tests
Corcept Therapeutics and Xceleron sign agreement for microdosing study using accelerator mass spectrometry
Stretched, ordered DNA molecules could bring insights into disease
New, portable tech sniffs out plant disease in the field
Terahertz flashes uncover state of matter hidden by superconductivity
Pivoting hooks of graphene's chemical cousin could revolutionize work of electron microscopes
Troubling levels of toxic metals found in lipstick
MIT gel changes color on demand - Material could lead to fast, inexpensive sensors
LGC Standards continues its growth in emerging markets with first Russian office