04-Nov-2021 - Fraunhofer-Institut für Physikalische Messtechnik (IPM)

Point-of-care diagnostics: New methods for detecting single molecules

Pathogen-specific detection: Even one single DNA molecule is enough

Resistance to antibiotics is on the rise worldwide. Researchers at the Fraunhofer Institute for Physical Measurement Techniques IPM alongside the Ludwig Maximilian University of Munich have developed a process for rapidly detecting multidrug-resistant pathogens. The unique feature: Even one single molecule of DNA is sufficient for pathogen detection. In future, the platform could be introduced as part of point-of-care diagnostics on hospital wards or in medical practices as an alternative to the established PCR analyses or in combination with other diagnostic methods.

Choosing the correct antibiotic to treat bacterial infections is a deciding factor when it comes to the success of a treatment. It is particularly difficult to select suitable medication in cases where a disease is caused by multidrug-resistant pathogens, which are unaffected by many antibiotics. Searching for the most effective antibiotic often requires information about the bacteria’s genome. Most of the time, this information is not readily available at medical practices and can only be obtained through a laboratory diagnosis. To accelerate and simplify the process, Fraunhofer IPM has collaborated with the Ludwig Maximilian University of Munich to develop a new platform for detecting pathogens on the basis of single molecules on a microfluidic chip. The focus of the SiBoF (signal boosters for fluorescence assays in molecular diagnostics) project lies on an easy-to-use point-of-care (POC) detection method. The project is funded by the German Federal Ministry of Education and Research (BMBF).

Pathogen-specific detection based on DNA molecules

The portable, compact test platform is equipped with an automated fluidic system. All necessary reagents are stored within the system. The injection-molded microfluidic chip is incorporated in a drawer in the test system, where it is supplied with the reagents through the fluidics system before the optical analysis takes place. “We detect part of the pathogen’s DNA strand. Using our new process, even a single molecule of DNA that binds to a specific site on the microfluidic chip is sufficient to do this. Fluidic channels are integrated into the chip – the surfaces of which are primed with binding sites for specific pathogens,” explains Dr. Benedikt Hauer, scientist at Fraunhofer IPM.

Nanoantennas strengthen fluorescence signals

Typically, target DNA molecules are detected by means of specific fluorescence markers. A unique feature of the new method designed by Fraunhofer IPM and the Ludwig Maximilian University of Munich is that researchers are utilizing antennas with nanometer-sized beads, which amplify the optical signals of these markers. Because of this, chemical amplification via polymerase chain reaction (PCR) is not required. “The optical antennas consist of nanometer-sized metal particles that concentrate light in a tiny region and also help to emit the light – much as macroscopic antennas do with radio waves,” says Hauer, the project manager of this research project at Fraunhofer IPM. These metal particles are chemically bound to the surface of the chip.

Results available after one hour

A structure of DNA molecules, known as “DNA origami”, which was specifically designed by the Ludwig Maximilian University of Munich, holds both of the gold nanoparticles in place. Between these nanoparticles, the structure provides a binding site for the respective target molecule and a fluorescence marker. This patented design provides the basis for the novel assay technology. “The particles, which are 100 nanometers in size, serve as antennas. Field enhancement, caused by plasmonic effects, takes place in the hotspot between the two gold particles. If a fluorescent dye is placed there, the detectable long-wave fluorescence radiation is enhanced multiple times. Using this method, a single molecule can be detected using a small, compact optical device,” explains the researcher. Low concentrations of pathogens can be detected. The result is available after one hour and is displayed on the monitor. This is not only true for multidrug-resistant pathogens, but also for any type of DNA molecule. In principle, the single molecule assay can be adapted to molecules beyond DNA, such as RNA, antibodies, antigens or enzymes. Numerous tests have successfully confirmed the functionality of the process.

At the heart of the POC device is a miniaturized high-resolution fluorescence microscope, developed by Fraunhofer IPM. Specifically developed image analysis software identifies single molecules and by doing so enables the captured target molecules to be counted, providing a quantitative result. The fluorescence is stimulated using LEDs, which are affixed underneath the cartridge containing the fluidic channels.

The patented system is available for the purpose of demonstration. Currently, a module for sample preparation is still missing.

Fraunhofer-Institut für Physikalische Messtechnik (IPM)

Recommend news PDF version / Print

Share on

Facts, background information, dossiers
  • multidrug resistance
  • point-of-care diagnosis
  • DNA
More about Fraunhofer-Institut IPM
  • News

    On the safe side: contact-free analysis of chemical substances

    Is it drugs, medicines or explosives? At the analytica trade fair, Fraunhofer researchers, joined by the Hübner Company, are presenting a terahertz spectrometer that provides reliable, contact-free identification of substances. December 2011: Security forces intercept a letter bomb addresse ... more

    Cell cultures from a machine

    The human genome has been decoded. Of all the puzzles it contains, though, many remain unsolved. We know that the genome provides the blueprint for various proteins, the building blocks of each and every cell. But what role do they play? Which proteins control cell division in a healthy bod ... more

    Energy-autonomous sensors in logistics: continuous control of perishable goods

    The safety and quality in the food supply of today’s globally organized and networked supply chain is everything else than warranted. More than 50% of all foodstuffs are spoiled in the transport routes; alone in Great Britain this makes up 17 million tons and approximately 20 billion Euros. ... more

More about Fraunhofer-Gesellschaft
More about LMU
  • News

    Finding the invisible

    Higher organisms store their genetic material in the nuclei of cells as deoxyribonucleic acid (DNA). In a process called transcription, individual segments, the genes, are converted into messenger ribonucleic acids (mRNAs). Subsequently, the translation process produces proteins as the most ... more

    HIV infection: Better understanding the reservoir of virus in the body

    CD4+ T cells are important parts of the immune system and play a key role in defending the body against pathogens. As they possess a great variety of defense mechanisms against HIV in their resting state, they are infected only very rarely – but these few infected cells form a latent reserv ... more

    PCR: Activated by light

    DNA polymerases and other enzymes that modify DNA are essential tools in biotechnology and diagnostics. They are the key component for COVID-19 diagnostics by PCR. As useful as they are, DNA processing enzymes often have important flaws. Some of them display significant activity during the ... more