04.11.2021 - Fraunhofer-Institut für Physikalische Messtechnik (IPM)

Point-of-Care-Diagnostik: Neue Methode für den Nachweis einzelner Moleküle

Erregerspezifische Erkennung: Schon ein einziges DNA-Molekül genügt

Resistenzen gegen Antibiotika nehmen weltweit ständig zu. Forschende des Fraunhofer-Instituts für Physikalische Messtechnik IPM haben gemeinsam mit der LMU München ein Verfahren entwickelt, um multiresistente Keime sehr schnell zu erkennen. Die Besonderheit: Bereits ein einzelnes DNA-Molekül genügt für den Erregernachweis. Die Plattform soll künftig in der Point-of-Care-Diagnostik auf Krankenstationen oder in Arztpraxen eingesetzt werden – alternativ zur etablierten PCR-Analyse oder in Kombination mit anderen diagnostischen Methoden.

Bei der Behandlung von bakteriellen Infektionen entscheidet das richtige Antibiotikum über den Erfolg der Therapie. Besonders schwierig ist die Auswahl des geeigneten Medikaments, wenn die Erkrankung durch multiresistente Erreger ausgelöst wird, die unempfindlich gegenüber vielen Antibiotika sind. Die Suche nach dem wirksamsten Antibiotikum erfordert oftmals Informationen über das Genom des Bakteriums. Diese sind in der Arztpraxis jedoch meist nicht sofort verfügbar, sondern erst nach einer Labordiagnose. Um den Vorgang zu beschleunigen und zu vereinfachen, entwickelt das Fraunhofer IPM gemeinsam mit der LMU München im Projekt (SiBoF), kurz für Signal-Booster für Fluoreszenz-Assays in der Molekularen Diagnostik, eine neuartige Plattform für den Erregernachweis anhand von einzelnen Molekülen auf einem mikrofluidischen Chip. Der Fokus liegt auf einer einfach zu bedienenden Point-of-Care-Erkennung (POC). Das Vorhaben wird vom Bundesministerium für Bildung und Forschung BMBF gefördert.

Erregerspezifische Erkennung auf Basis von DNA-Molekülen

Die portable, kompakte Test-Plattform verfügt über ein automatisiertes Fluidiksystem. Alle notwendigen Reagenzien werden in dem System vorgelagert. Der spritzgegossene Mikrofluidik-Chip wird in einer Schublade in das Testsystem eingebracht, wo es durch die Fluidik mit den Reagenzien versorgt wird, bevor die optische Auswertung stattfindet. »Wir weisen einen Teil des DNA-Strangs des Erregers nach. Hierfür genügt bei unserem neuen Verfahren bereits ein einzelnes DNA-Molekül, das an einer bestimmten Stelle am Mikrofluidik-Chip anbindet. Auf dem Chip befinden sich Fluidikkanäle, deren Oberflächen mit Bindungsstellen für spezifische Erreger präpariert wurden«, erläutert Dr. Benedikt Hauer, Wissenschaftler am Fraunhofer IPM.

Nanoantennen verstärken Fluoreszenzsignale

Typischerweise werden Ziel-DNA-Moleküle in-vitro mit Hilfe spezifischer Fluoreszenzmarker nachgewiesen. Die Besonderheit der neuen Methode des Fraunhofer IPM und der LMU München: Die Forscherinnen und Forscher setzen Antennen mit nanometergroßen Kügelchen ein, die die optischen Signale dieser Marker verstärken. Dadurch wird eine chemische Verstärkung über die Polymerase-Kettenreaktion (PCR) überflüssig. »Die optischen Antennen bestehen aus nanometergroßen Metallpartikeln, die Licht in einem winzigen Bereich bündeln und dabei helfen, Licht auszusenden – ähnlich wie makroskopische Antennen mit Radiowellen«, sagt Hauer, der das Forschungsprojekt am Fraunhofer IPM leitet. Diese Metallpartikel sind an der Oberfläche des Chips chemisch angebunden.

Ergebnis liegt nach einer Stunde vor

Eine von der LMU München speziell konstruierte Struktur aus DNA-Molekülen, ein sogenanntes DNA-Origami, hält die beiden Gold-Nanopartikel an Ort und Stelle. Zwischen diesen Nanopartikeln bietet die Struktur eine Bindungsstelle für das jeweilige Zielmolekül und einen Fluoreszenzmarker. Dieses patentierte Design bildet die Grundlage für die neuartige Assay-Technologie. »Die jeweils 100 Nanometer großen Partikel dienen als Antenne. In dem Hot-spot zwischen den beiden Goldpartikeln findet durch plasmonische Effekte eine Feldverstärkung statt. Platziert man dort einen Fluoreszenzfarbstoff, wird die detektierbare längerwellige Fluoreszenzstrahlung um ein Vielfaches verstärkt. Auf diese Weise kann mit einer kleinen, kompakten optischen Vorrichtung ein einzelnes Molekül erkannt werden«, erklärt der Forscher. Geringe Konzentrationen von Krankheitserregern lassen sich nachweisen. Das Ergebnis liegt schon nach einer Stunde vor und wird am Monitor angezeigt. Dies gilt nicht nur für multiresistente Keime, sondern für jede Art von DNA-Molekülen. Grundsätzlich lässt sich der Einzelmolekül-Assay auch auf Moleküle jenseits der DNA, wie RNA, Antikörper/Antigene oder Enzyme, anwenden. Die Funktionsweise des Verfahrens wurde durch zahlreiche Tests erfolgreich bestätigt.

Das Herzstück des POC-Geräts ist ein vom Fraunhofer IPM entwickeltes miniaturisiertes hochauflösendes Fluoreszenzmikroskop. Eine spezielle Bildanalysesoftware identifiziert die Einzelmoleküle und ermöglicht so die Zählung der eingefangenen Zielmoleküle für ein quantitatives Ergebnis. Angeregt wird die Fluoreszenz durch LED, die unterhalb der Kartusche mit den Fluidikkanälen angebracht sind.

Das patentierte System liegt als Demonstrator vor. Derzeit fehlt noch ein Modul zur Probenaufbereitung.

Fraunhofer-Institut für Physikalische Messtechnik (IPM)

News weiterempfehlen PDF Ansicht / Drucken

Teilen bei

Fakten, Hintergründe, Dossiers
  • multiresistente Keime
  • Desoxyribonukleinsäure
  • Point-of-Care-Diagnostik
  • Fluoreszenzmikroskope
  • Einzelmolekülanalysen
  • Einzelmolekül-Fluor…
Mehr über Fraunhofer-Institut IPM
  • News

    Neues Messsystem für Erdgas – schnell und genau

    Die Qualität von Erdgas unterliegt starken Schwankungen. Nicht nur unterschiedliche Erdgasvorkommen sind dafür verantwortlich, sondern zunehmend auch die Einspeisung von Wasserstoff aus Power-to-Gas-Anlagen. Zur Brenngasanalyse hat Fraunhofer IPM zusammen mit der RMA Mess- und Regeltechnik ... mehr

    Gassensoren warnen vor Schwelbränden

    Rauchmelder sind allgegenwärtig. Dennoch geht die Zahl der Brandopfer jährlich in die Tausende. Brandgasmelder, die auf Kohlenstoffmonoxid und Stickoxide reagieren, entdecken Brände im Frühstadium. Durch ein neues Messprinzip von Fraunhofer-Forschern werden die teuren Sensoren nun kostengün ... mehr

    Terahertz goes Nano: Hochauflösende Terahertz-Nahfeld-Mikroskopie

    Terahertz-Wellen stoßen aufgrund ihrer großen Wellenlänge an Grenzen, wenn es um die Erkennung kleinster Strukturen geht. Die Kopplung von Terahertz-Wellen mit einem Nahfeld-Mikroskop ermöglicht es, die laterale Auflösung bis in den Nanometerbereich zu erhöhen. Im Auftrag des Nahfeld-Mikros ... mehr

Mehr über Fraunhofer-Gesellschaft
Mehr über LMU
  • News

    Mikroskopie: Höchste Auflösung in drei Dimensionen

    Superauflösende Mikroskopiemethoden sind essenziell, um Strukturen und Dynamik von Molekülen aufzudecken. Seit Forschende die lange als fundamental geltende Auflösungsgrenze von etwa 250 Nanometern überwunden haben (dafür gab es 2014 den Nobelpreis für Chemie), haben sich die Methoden in de ... mehr

    Die Chemie der Mumifizierung

    Ein internationales Forschungsteam der LMU und der Universität Tübingen entschlüsselt altägyptische Balsamierung. Gefäße aus einer Mumifizierungswerkstatt in Sakkara erlauben neue Einblicke, welche Substanzen zur Konservierung von Körpern verwendet wurden. Vor genau 100 Jahren wurde das Gra ... mehr

    Nasenhöhlenkrebs: KI ermöglicht Durchbruch in der Diagnostik

    Tumore in der Nasenhöhle und der Nasennebenhöhle beschränken sich zwar auf einen kleinen Raum, umfassen aber ein sehr breites Spektrum mit vielen Tumorarten. Diese sind schwer zu diagnostizieren, da sie oft kein spezifisches Muster oder Erscheinungsbild aufweisen. Besonders gilt dies für di ... mehr